Photocatalytic activity of XInS2 (X: Ag, Cu) nanoparticles for oxidative desulfurization of diesel fuel

Authors

  • Pham Xuan Nui Department of Chemical Engineering, Faculty of Petroleum and Energy, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem district, Hanoi, Vietnam Author
  • Ngo Thanh Hai Department of Chemical Engineering, Faculty of Oil and Gas, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem district, Hanoi, Vietnam Author
  • Vu Van Toan Department of Chemical Engineering, Faculty of Oil and Gas, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang, Bac Tu Liem district, Hanoi, Vietnam Author
  • Cong Tien Dung Department of Chemistry, Faculty of Basic Science, Hanoi University of Mining and Geology Author
  • Le Thi Phuong Thao Department of Chemistry, Faculty of Basic Science, Hanoi University of Mining and Geology Author

DOI:

https://doi.org/10.62239/jca.2024.050

Keywords:

oxidative desulfurization, photocatalysts, Ag(Cu)InS2, dibenzothiophene, diesel fuel

Abstract

In this work, Ag(Cu)InS2 semiconductor nanoparticles were synthesized via microwave and solvothermal methods. The effects of synthetical parameters on the structure and morphology of the nanoparticles were characterized by XRD, SEM, TEM, UV–Vis, and EDX. The experimental results reveal that the AgInS2 compound can be crystallized in two different phases, which are tetragonal and orthorhombic. The nanoparticles size of AgInS2 is about 15-16 nm and the direct band gap energy (Eg) of 2.041. While CuInS2 has the average particle size of around 25 nm and Eg value of 3.38 eV. The catalytic activity of both AgInS2 and CuInS2 materials were performed for photocatalytic oxidative desulfurization of sulfur compounds in the commercial diesel fuel under visible light. The maximum oxidation efficiency of 98.05% was achieved for AgInS2 catalyst after 8 hours of reaction time.

Downloads

Download data is not yet available.

References

J. Zhang, K. He, Y. Ge, X. Shi, Fuel 88 (2009) 504. http://dx.doi.org/10.1016/j.fuel.2008.09.001

B. Zielinska, J. Sagebiel, J.D. McDonald, K. Whitney, D.R. Lawson, J. Air Waste Manage. Assoc. 54 (2004) 1138. http://doi.org/10.1080/10473289.2004.10470973

M.M. Maricq, R.E. Chase, N. Xu, D.H. Podsiadlik, Environ. Sci. Technol. 36 (2002) 276. http://doi.org/10.1021/es010961t

S.D. Shah, D.R. Cocker, J.W. Miller, J.M. Norbeck, Environ. Sci. Technol. 38 (2004) 2544. http://doi.org/10.1021/es0350583

P. Saiyasitpanich, M. Lu, T.C. Keener, F. Liang, S.-J. Khang, J. Air Waste Manage. Assoc. 55 (2005) 993. http://doi.org/10.1080/10473289.2005.10464685

Z. Deng, T. Wang, Z. Wang, Chem. Eng. Sci. 65 (2010) 480. http://dx.doi.org/10.1016/j.ces.2009.05.046

M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. de Beer, B.C. Gates, H. Kwart, J. Catal. 61 (1980) 523. http://dx.doi.org/10.1016/0021-9517(80)90400-5

S. Guchhait, D. Biswas, P. Bhattacharya, R. Chowdhury, Chem. Eng. J. 112 (2005) 145. http://dx.doi.org/10.1016/j.cej.2005.05.006

Y. Shen, P. Li, X. Xu, H. Liu, RSC Adv. 2 (2012) 1700. http://doi.org/10.1039/C1RA00944C

X. Ma, A. Zhou, C. Song, Catal. Today 123 (2007) 276. http://dx.doi.org/10.1016/j.cattod.2007.02.036

D. Zhao, J. Wang, E. Zhou, Green Chem. 9 (2007) 1219. http://doi.org/10.1039/B706574D

H. Lu, J. Gao, Z. Jiang, Y. Yang, B. Song, C. Li, Chem. Commun. (2007) 150. http://doi.org/10.1039/B610504A

F. Lin, Y. Zhang, L. Wang, Y. Zhang, D. Wang, M. Yang, J. Yang, B. Zhang, Z. Jiang, C. Li, Appl. Catal., B 127 (2012) 363. http://dx.doi.org/10.1016/j.apcatb.2012.08.024

J.M. Campos-Martin, M.C. Capel-Sanchez, P. Perez-Presas, J.L.G. Fierro, J. Chem. Technol. Biotechnol. 85 (2010) 879. http://doi.org/10.1002/jctb.2371

D. Huang, Y.J. Wang, Y.C. Cui, G.S. Luo, Micropor. Mesopor. Mater. 116 (2008) 378. http://dx.doi.org/10.1016/j.micromeso.2008.04.031

L. Kong, G. Li, X. Wang, B. Wu, Energy Fuels 20 (2006) 896. http://doi.org/10.1021/ef050252r

V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126 (2004) 4943. http://doi.org/10.1021/ja0315199

Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127 (2005) 7632. http://doi.org/10.1021/ja042192u

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima, Nat. Mater. 2 (2003) 29.

U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170 (2009) 520. http://dx.doi.org/10.1016/j.jhazmat.2009.05.039

M. Anpo, M. Takeuchi, J. Catal. 216 (2003) 505. http://dx.doi.org/10.1016/S0021-9517(02)00104-5

E.S. Aazam, Ceram. Int. 40 (2014) 6705. http://dx.doi.org/10.1016/j.ceramint.2013.11.132

C. Wang, W. Zhu, Y. Xu, H. Xu, M. Zhang, Y. Chao, S. Yin, H. Li, J. Wang, Ceram. Int. 40 (2014) 11627. http://dx.doi.org/10.1016/j.ceramint.2014.03.156

T.H.T. Vu, T.T.T. Nguyen, P.H.T. Nguyen, M.H. Do, H.T. Au, T.B. Nguyen, D.L. Nguyen, J.S. Park, Mater. Res. Bull. 47 (2012) 308. http://dx.doi.org/10.1016/j.materresbull.2011.11.016

S. Jeon, C. Lee, J. Tang, J. Hone, C. Nuckolls, Nano Res. 1 (2008) 427. http://doi.org/10.1007/s12274-008-8044-1

H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, J. Silcox, Nano Lett. 2 (2002) 1321. http://doi.org/10.1021/nl025785g

W. Xiang, C. Xie, J. Wang, J. Zhong, X. Liang, H. Yang, L. Luo, Z. Chen, J. Alloys Compd. 588 (2014) 114. http://dx.doi.org/10.1016/j.jallcom.2013.10.188

U. Dasgupta, S.K. Saha, A.J. Pal, Sol. Energy Mater. Sol. Cells 124 (2014) 79. http://dx.doi.org/10.1016/j.solmat.2014.01.041

M. Guijun, L. Zhibin, Y. Hongjian, Z. Xu, L. Can, Chinese. J. Catal. 30 (2009) 73.

E.S. Aazam, J. Ind. Eng. Chem. 20 (2014) 4008. http://dx.doi.org/10.1016/j.jiec.2013.12.104

X.N. Pham, V.T. Vu, H.V.T. Nguyen, T.T.B. Nguyen, H.V. Doan. Nanoscale Adv., 2022,4, 3600-3608. https://doi.org/10.1039/D2NA00371F

H.V.T. Nguyen, M.B. Nguyen, H.V. Doan, X.N. Pham. Mater. Res. Express 10 (2023) 085506. https://doi.org/10.1088/2053-1591/acf18f

N.T.M. Thuy, T.T.K. Chi, U.T.D. Thuy, N.Q. Liem, Opt. Mater. 37 (2014) 823. http://dx.doi.org/10.1016/j.optmat.2014.09.016

S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, F. Mohandes, J. Ind. Eng. Chem. 20 (2014) 3800. http://dx.doi.org/10.1016/j.jiec.2013.12.082

X.N. Pham, B.M. Nguyen, H.T. Tran, H.V. Doan. Adv. Powder Technol. 29 (2018) 1827–1837. https://doi.org/10.1016/j.apt.2018.04.019

X.N. Pham, M.B. Nguyen, H.S. Ngo, H. V. Doan, J. Ind. Eng. Chem. 90 (2020) 358–370. https://doi.org/10.1016/j.jiec.2020.07.037

S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Desalination 261 (2010) 3–18. https://doi.org/10.1016/j.desal.2010.04.062

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Photocatalytic activity of XInS2 (X: Ag, Cu) nanoparticles for oxidative desulfurization of diesel fuel. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 6-11. https://doi.org/10.62239/jca.2024.050

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 130

You may also start an advanced similarity search for this article.