Photocatalytic activity of XInS2 (X: Ag, Cu) nanoparticles for oxidative desulfurization of diesel fuel
DOI:
https://doi.org/10.62239/jca.2024.050Keywords:
oxidative desulfurization, photocatalysts, Ag(Cu)InS2, dibenzothiophene, diesel fuelAbstract
In this work, Ag(Cu)InS2 semiconductor nanoparticles were synthesized via microwave and solvothermal methods. The effects of synthetical parameters on the structure and morphology of the nanoparticles were characterized by XRD, SEM, TEM, UV–Vis, and EDX. The experimental results reveal that the AgInS2 compound can be crystallized in two different phases, which are tetragonal and orthorhombic. The nanoparticles size of AgInS2 is about 15-16 nm and the direct band gap energy (Eg) of 2.041. While CuInS2 has the average particle size of around 25 nm and Eg value of 3.38 eV. The catalytic activity of both AgInS2 and CuInS2 materials were performed for photocatalytic oxidative desulfurization of sulfur compounds in the commercial diesel fuel under visible light. The maximum oxidation efficiency of 98.05% was achieved for AgInS2 catalyst after 8 hours of reaction time.
Downloads
References
J. Zhang, K. He, Y. Ge, X. Shi, Fuel 88 (2009) 504. http://dx.doi.org/10.1016/j.fuel.2008.09.001
B. Zielinska, J. Sagebiel, J.D. McDonald, K. Whitney, D.R. Lawson, J. Air Waste Manage. Assoc. 54 (2004) 1138. http://doi.org/10.1080/10473289.2004.10470973
M.M. Maricq, R.E. Chase, N. Xu, D.H. Podsiadlik, Environ. Sci. Technol. 36 (2002) 276. http://doi.org/10.1021/es010961t
S.D. Shah, D.R. Cocker, J.W. Miller, J.M. Norbeck, Environ. Sci. Technol. 38 (2004) 2544. http://doi.org/10.1021/es0350583
P. Saiyasitpanich, M. Lu, T.C. Keener, F. Liang, S.-J. Khang, J. Air Waste Manage. Assoc. 55 (2005) 993. http://doi.org/10.1080/10473289.2005.10464685
Z. Deng, T. Wang, Z. Wang, Chem. Eng. Sci. 65 (2010) 480. http://dx.doi.org/10.1016/j.ces.2009.05.046
M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. de Beer, B.C. Gates, H. Kwart, J. Catal. 61 (1980) 523. http://dx.doi.org/10.1016/0021-9517(80)90400-5
S. Guchhait, D. Biswas, P. Bhattacharya, R. Chowdhury, Chem. Eng. J. 112 (2005) 145. http://dx.doi.org/10.1016/j.cej.2005.05.006
Y. Shen, P. Li, X. Xu, H. Liu, RSC Adv. 2 (2012) 1700. http://doi.org/10.1039/C1RA00944C
X. Ma, A. Zhou, C. Song, Catal. Today 123 (2007) 276. http://dx.doi.org/10.1016/j.cattod.2007.02.036
D. Zhao, J. Wang, E. Zhou, Green Chem. 9 (2007) 1219. http://doi.org/10.1039/B706574D
H. Lu, J. Gao, Z. Jiang, Y. Yang, B. Song, C. Li, Chem. Commun. (2007) 150. http://doi.org/10.1039/B610504A
F. Lin, Y. Zhang, L. Wang, Y. Zhang, D. Wang, M. Yang, J. Yang, B. Zhang, Z. Jiang, C. Li, Appl. Catal., B 127 (2012) 363. http://dx.doi.org/10.1016/j.apcatb.2012.08.024
J.M. Campos-Martin, M.C. Capel-Sanchez, P. Perez-Presas, J.L.G. Fierro, J. Chem. Technol. Biotechnol. 85 (2010) 879. http://doi.org/10.1002/jctb.2371
D. Huang, Y.J. Wang, Y.C. Cui, G.S. Luo, Micropor. Mesopor. Mater. 116 (2008) 378. http://dx.doi.org/10.1016/j.micromeso.2008.04.031
L. Kong, G. Li, X. Wang, B. Wu, Energy Fuels 20 (2006) 896. http://doi.org/10.1021/ef050252r
V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126 (2004) 4943. http://doi.org/10.1021/ja0315199
Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127 (2005) 7632. http://doi.org/10.1021/ja042192u
Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima, Nat. Mater. 2 (2003) 29.
U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170 (2009) 520. http://dx.doi.org/10.1016/j.jhazmat.2009.05.039
M. Anpo, M. Takeuchi, J. Catal. 216 (2003) 505. http://dx.doi.org/10.1016/S0021-9517(02)00104-5
E.S. Aazam, Ceram. Int. 40 (2014) 6705. http://dx.doi.org/10.1016/j.ceramint.2013.11.132
C. Wang, W. Zhu, Y. Xu, H. Xu, M. Zhang, Y. Chao, S. Yin, H. Li, J. Wang, Ceram. Int. 40 (2014) 11627. http://dx.doi.org/10.1016/j.ceramint.2014.03.156
T.H.T. Vu, T.T.T. Nguyen, P.H.T. Nguyen, M.H. Do, H.T. Au, T.B. Nguyen, D.L. Nguyen, J.S. Park, Mater. Res. Bull. 47 (2012) 308. http://dx.doi.org/10.1016/j.materresbull.2011.11.016
S. Jeon, C. Lee, J. Tang, J. Hone, C. Nuckolls, Nano Res. 1 (2008) 427. http://doi.org/10.1007/s12274-008-8044-1
H. Du, C. Chen, R. Krishnan, T.D. Krauss, J.M. Harbold, F.W. Wise, M.G. Thomas, J. Silcox, Nano Lett. 2 (2002) 1321. http://doi.org/10.1021/nl025785g
W. Xiang, C. Xie, J. Wang, J. Zhong, X. Liang, H. Yang, L. Luo, Z. Chen, J. Alloys Compd. 588 (2014) 114. http://dx.doi.org/10.1016/j.jallcom.2013.10.188
U. Dasgupta, S.K. Saha, A.J. Pal, Sol. Energy Mater. Sol. Cells 124 (2014) 79. http://dx.doi.org/10.1016/j.solmat.2014.01.041
M. Guijun, L. Zhibin, Y. Hongjian, Z. Xu, L. Can, Chinese. J. Catal. 30 (2009) 73.
E.S. Aazam, J. Ind. Eng. Chem. 20 (2014) 4008. http://dx.doi.org/10.1016/j.jiec.2013.12.104
X.N. Pham, V.T. Vu, H.V.T. Nguyen, T.T.B. Nguyen, H.V. Doan. Nanoscale Adv., 2022,4, 3600-3608. https://doi.org/10.1039/D2NA00371F
H.V.T. Nguyen, M.B. Nguyen, H.V. Doan, X.N. Pham. Mater. Res. Express 10 (2023) 085506. https://doi.org/10.1088/2053-1591/acf18f
N.T.M. Thuy, T.T.K. Chi, U.T.D. Thuy, N.Q. Liem, Opt. Mater. 37 (2014) 823. http://dx.doi.org/10.1016/j.optmat.2014.09.016
S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, F. Mohandes, J. Ind. Eng. Chem. 20 (2014) 3800. http://dx.doi.org/10.1016/j.jiec.2013.12.082
X.N. Pham, B.M. Nguyen, H.T. Tran, H.V. Doan. Adv. Powder Technol. 29 (2018) 1827–1837. https://doi.org/10.1016/j.apt.2018.04.019
X.N. Pham, M.B. Nguyen, H.S. Ngo, H. V. Doan, J. Ind. Eng. Chem. 90 (2020) 358–370. https://doi.org/10.1016/j.jiec.2020.07.037
S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Desalination 261 (2010) 3–18. https://doi.org/10.1016/j.desal.2010.04.062
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 105.99-2023.01