Highly efficient adsorption of dye using novel reduced graphene oxide/halloysite nanocomposite
DOI:
https://doi.org/10.51316/jca.2022.040Keywords:
Dye adsorption, reduced graphene oxide, halloysite, nanocomposite, kineticsAbstract
The novel composite nanomaterials were synthesized via a simple method from two natural clay mineral sources, graphite and halloysite. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), Brunauer-Emmet-Teller (BET) methods. The results showed that halloysite nanotubes are successfully intercalated between the graphene oxide layers. The adsorption capacity of the material with RY-145, a typical dye in textile wastewater, was evaluated. Also, the effects of adsorption time, initial concentration of pollutant, adsorbent dosage, speed of agitation and temperature were investigated. The adsorption efficiency of the material for RY-145 dye is about 99% after 4 hours with the high initial concentration of pollutant of 50ppm. Adsorption kinetics of the material for RY-145 match the pseudo-second order kinetic of Langmuir adsorption model. The outstanding performance of the nanocomposite as an adsorbent highlight the promising applications of the novel material in was water treatment processes.
Downloads
References
J. Sokolowska-Gajda, H.S. Freeman, A. Reife, Dyes Pigments. 30 (1996) 1–20.
https://doi.org/10.1016/0143-7208(95)00048-8.
K. Ivanov, Pap. 50 (1996) 456.
I. Kabdaşli, O. Tünay, D. Orhon, , Water Sci. Technol. 40 (1999) 261–267. https://doi.org/10.1016/S0273-1223(99)00393-5.
N. Bensalah, M.A.Q. Alfaro, C.A. Martínez-Huitle, , Chem. Eng. J. 149 (2009) 348–352. https://doi.org/10.1016/j.cej.2008.11.031.
D. Wróbel, A. Boguta, R.M. Ion, J. Photochem. Photobiol. Chem. 138 (2001) 7–22. https://doi.org/10.1016/S1010-6030(00)00377-4.
S. Dawood, T.K. Sen, C. Phan, Water. Air. Soil Pollut. 225 (2013) 1818. https://doi.org/10.1007/s11270-013-1818-4.
Y.C. Wong, Y.S. Szeto, W.H. Cheung, G. McKay, Process Biochem. 39 (2004) 695–704. https://doi.org/10.1016/S0032-9592(03)00152-3.
T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, Water. Air. Soil Pollut. 218 (2011) 499–515. https://doi.org/10.1007/s11270-010-0663-y.
M.T. Yagub, T.K. Sen, H.M. Ang, Water. Air. Soil Pollut. 223 (2012) 5267–5282. https://doi.org/10.1007/s11270-012-1277-3.
V.K. Gupta, Suhas, , J. Environ. Manage. 90 (2009) 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017.
R. Kant, , J. Water Resour. Prot. 4 (2012) 93–98. https://doi.org/10.4236/jwarp.2012.42011.
M.S.U. Rehman, I. Kim, J.-I. Han, Carbohydr. Polym. 90 (2012) 1314–1322. https://doi.org/10.1016/j.carbpol.2012.06.078.
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science. 306 (2004) 666–669. https://doi.org/10.1126/science.1102896.
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science. 320 (2008) 1308–1308. https://doi.org/10.1126/science.1156965.
C. Lee, X. Wei, J.W. Kysar, J. Hone, Science. 321 (2008) 385–388. https://doi.org/10.1126/science.1157996.
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902–907. https://doi.org/10.1021/nl0731872.
C. Vallés, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, A. Pénicaud, J. Am. Chem. Soc. 130 (2008) 15802–15804. https://doi.org/10.1021/ja808001a.
D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3 (2008) 101–105. https://doi.org/10.1038/nnano.2007.451.
X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F.Y.C. Boey, Q. Yan, P. Chen, H. Zhang, J. Phys. Chem. C. 113 (2009) 10842–10846. https://doi.org/10.1021/jp903821n.
H. Li, X. Gui, L. Zhang, S. Wang, C. Ji, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao, Chem. Commun. 46 (2010) 7966–7968. https://doi.org/10.1039/C0CC03290E.
B. Li, H. Cao, J. Mater. Chem. 21 (2011) 3346–3349. https://doi.org/10.1039/C0JM03253K.
A.Y. Romanchuk, A.S. Slesarev, S.N. Kalmykov, D.V. Kosynkin, J.M. Tour, Phys. Chem. Chem. Phys. 15 (2013) 2321–2327. https://doi.org/10.1039/C2CP44593J.
X. Wang, L. Song, H. Yang, W. Xing, H. Lu, Y. Hu, J. Mater. Chem. 22 (2012) 3426–3431. https://doi.org/10.1039/C2JM15637G.
J. Ding, B. Li, Y. Liu, X. Yan, S. Zeng, X. Zhang, L. Hou, Q. Cai, J. Zhang, J. Mater. Chem. A. 3 (2014) 832–839. https://doi.org/10.1039/C4TA04297B.
C. Nethravathi, B. Viswanath, C. Shivakumara, N. Mahadevaiah, M. Rajamathi, Carbon. 46 (2008) 1773–1781. https://doi.org/10.1016/j.carbon.2008.07.037.
W. Katinonkul, M.M. Lerner, Carbon. 45 (2007) 2672–2677. https://doi.org/10.1016/j.carbon.2007.07.020.
N.A. Travlou, G.Z. Kyzas, N.K. Lazaridis, E.A. Deliyanni, Langmuir. 29 (2013) 1657–1668. https://doi.org/10.1021/la304696y.
G. Chen, M. Sun, Q. Wei, Y. Zhang, B. Zhu, B. Du, , J. Hazard. Mater. 244–245 (2013) 86–93. https://doi.org/10.1016/j.jhazmat.2012.11.032.
N. Baig, Ihsanullah, M. Sajid, T.A. Saleh, J. Environ. Manage. 244 (2019) 370–382. https://doi.org/10.1016/j.jenvman.2019.05.047.
K. Thakur, B. Kandasubramanian, J. Chem. Eng. Data. 64 (2019) 833–867. https://doi.org/10.1021/acs.jced.8b01057.
I. Ali, A.A. Basheer, X.Y. Mbianda, A. Burakov, E. Galunin, I. Burakova, E. Mkrtchyan, A. Tkachev, V. Grachev, , Environ. Int. 127 (2019) 160–180. https://doi.org/10.1016/j.envint.2019.03.029.
L. Liu, Y. Wan, Y. Xie, R. Zhai, B. Zhang, J. Liu, Chem. Eng. J. 187 (2012) 210–216. https://doi.org/10.1016/j.cej.2012.01.136.
L. Guimarães, A.N. Enyashin, G. Seifert, H.A. Duarte, Structural, J. Phys. Chem. C. 114 (2010) 11358–11363. https://doi.org/10.1021/jp100902e.
V. Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti Biomacromolecules. 11 (2010) 820–826. https://doi.org/10.1021/bm9014446.
J. Xiao, X. Shaolei, Y. Jing, Y. Yao, X. Wang, Y. Jia, J. Mol. Liq. 220 (2016). 304-310. https://doi.org/10.1016/j.molliq.2016.04.057
J. Zare Pirhaji, F. Moeinpour, A. Mirhoseini Dehabadi, S.A. Yasini Ardakani, J. Mol. Liq. 300 (2020) 112345. https://doi.org/10.1016/j.molliq.2019.112345.
W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339–1339. https://doi.org/10.1021/ja01539a017.
Y. Yang, Y. Chun, G. Sheng, M. Huang, Langmuir. 20 (2004) 6736–6741. https://doi.org/10.1021/la049363t.
J. Duan, R. Liu, T. Chen, B. Zhang, J. Liu, Desalination. 293 (2012) 46–52. https://doi.org/10.1016/j.desal.2012.02.022.
G. Mishra, M. Mukhopadhyay, Sci. Rep. 9 (2019) 4345. https://doi.org/10.1038/s41598-019-40775-4.
Y. Liu, X. Jiang, B. Li, X. Zhang, T. Liu, X. Yan, J. Ding, Q. Cai, J. Zhang, J. Mater. Chem. A. 2 (2014) 4264–4269. https://doi.org/10.1039/C3TA14594H.
M.A. Ahmad, N.A. Ahmad Puad, O.S. Bello, Water Resour. Ind. 6 (2014) 18–35. https://doi.org/10.1016/j.wri.2014.06.002.
F. Çiçek, D. Özer, A. Özer, A. Özer, J. Hazard. Mater. 146 (2007) 408–416. https://doi.org/10.1016/j.jhazmat.2006.12.037.
D.K. Mahmoud, M.A.M. Salleh, W.A.W.A. Karim, A. Idris, Z.Z. Abidin, Chem. Eng. J. 181–182 (2012) 449–457. https://doi.org/10.1016/j.cej.2011.11.116.
A. Geethakarthi, B.R. Phanikumar, International journal of Environmental Science and Technology 8 (2011) 561-570. https://doi.org/10.1007/BF03326242
B.A. Fil, C. Ozmetn, J. Chem. Soc. Pak. 34 (2012) 896–906.
C.K. Lee, K.S. Low, S.W. Chow, Environ. Technol. 17 (1996) 1023–1028. https://doi.org/10.1080/09593331708616471.
S. Netpradit, P. Thiravetyan, S. Towprayoon, J. Colloid Interface Sci. 270 (2004) 255–261. https://doi.org/10.1016/j.jcis.2003.08.073.
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021–MDA-02