Study on Chloroquine phosphate loading capacity of MIL-100(Fe) synthesized by sonochemical method

Authors

  • Le Thanh Bac Institute of Chemistry and Materials/Academy of Military Science and Technology
  • Nguyen Thi Hoai Phuong Institute of Chemistry and Materials/Academy of Military Science and Technology
  • La Duc Duong Institute of Chemistry and Materials/Academy of Military Science and Technology
  • Nguyen Thi Phuong Institute of Chemistry and Materials/Academy of Military Science and Technology
  • Tran Thi Cam Le Hanoi National University of Education

DOI:

https://doi.org/10.51316/jca.2023.045

Keywords:

MIL-100(Fe), Chloroquine phosphate, drug delivery system, sonochemical method

Abstract

Iron-based metal-organic framework (MIL-100(Fe)) was successfully synthesized by sonochemical method at the frequency of 20.5kHz, power of 1080 W in 10 minutes. Several physical measurements were conducted to characterize the MIL-100(Fe) including XRD, FT-IR, Raman, BET, and SEM methods. The analysis results show that the material has characteristic diffraction peaks at 11o, 19o, 24o, and 28o, the specific surface area of the material reaches 1080 m2/g according to BET, and the particle size from 200-400 nm according to SEM. The chloroquine phosphate loading capacity of MIL-100(Fe) was evaluated according to different adsorption kinetic and isothermal models. The results show that the chloroquine phosphate loading process by material consists of two stages: surface adsorption and intra-particle diffusion. The maximum chloroquine phosphate adsorption capacity of the material reached 236 (mg/g) according to the Langmuir model.

Downloads

Download data is not yet available.

References

O.M. Yaghi, G. Li, H. Li, Nature 378 (1995) 703. https://10.1038/378703a0

N.M. Mahmoodi, J. Abdi, M. Oveisi, M.A. Asli, M. Vossoughi, Materials Research Bulletin 100 (2018) 357. https://DOI.org/10.1016/j.materresbull.2017.12.033

J.J. Delgado-Marín, J. Narciso, E.V. Ramos-Fernández, Materials 15 (2022) 6499. https://DOI.org/10.3390/ma15186499

M.A. Simon, E. Anggraeni, F.E. Soetaredjo, S.P. Santoso, W. Irawaty, T.C. Thanh, S.B. Hartono, M. Yuliana, S. Ismadji, Scientific reports 9 (2019) 1. https://10.1038/s41598-019-53436-3

A. Mittal, I. Roy, S. Gandhi, (2022). https://10.5772/intechopen.103684

A. Yohannes, Y. Su, S. Yao, Metal− Organic Frameworks for Environmental Remediation (2021) 1. https://10.1021/bk-2021-1395.ch001

V. Russo, M. Hmoudah, F. Broccoli, M.R. Iesce, O.-S. Jung, M. Di Serio, Frontiers in Chemical Engineering 2 (2020) 581487. https://DOI.org/10.3389/fceng.2020.581487

P. Billemont, N. Heymans, P. Normand, G. De Weireld, Adsorption 23 (2017) 225. https://10.1007/s10450-016-9825-6

G. Zhong, D. Liu, J. Zhang, Crystal Growth & Design 18 (2018) 7730. https://DOI.org/10.1021/acs.cgd.8b01353

P.G. Mileo, D.N. Gomes, D.V. Gonçalves, S.M. Lucena, Adsorption 27 (2021) 1123. https://10.1007/s10450-021-00343-7

N.M. Mahmoodi, M. Taghizadeh, A. Taghizadeh, Korean Journal of Chemical Engineering 36 (2019) 287. https://10.1007/s11814-018-0162-1

R. Nivetha, K. Gothandapani, V. Raghavan, G. Jacob, R. Sellappan, P. Bhardwaj, S. Pitchaimuthu, A.N.M. Kannan, S.K. Jeong, A.N. Grace, ACS omega 5 (2020) 18941.

https://doi.org/10.1021/acsomega.0c02171

Y. Fang, Z. Yang, H. Li, X. Liu, Environmental Science and Pollution Research 27 (2020) 4703. https://10.1007/s11356-019-07318-w

A. García Márquez, A. Demessence, A.E. Platero‐Prats, D. Heurtaux, P. Horcajada, C. Serre, J.S. Chang, G. Férey, V.A. de la Peña‐O'Shea, C. Boissière, European Journal of Inorganic Chemistry 2012 (2012) 5165. https://DOI.org/10.1002/ejic.201200710

F. Jeremias, S.K. Henninger, C. Janiak, Dalton transactions 45 (2016) 8637. https://DOI.org/10.1039/C6DT01179A

W.W. Lestari, R. Meilani, I. Nurcahyo, L. Larasati, (2021). https://DOI.org/10.21203/rs.3.rs-810297/v1

S. Kumar, S. Jain, M. Nehra, N. Dilbaghi, G. Marrazza, K.-H. Kim, Coordination Chemistry Reviews 420 (2020) 213407. https://DOI.org/10.1016/j.ccr.2020.213407

J. Rengelshausen, J. Burhenne, M. Fröhlich, Y. Tayrouz, S.K. Singh, K.-D. Riedel, O. Müller, T. Hoppe-Tichy, W.E. Haefeli, G. Mikus, European journal of clinical pharmacology 60 (2004) 709. https://10.1007/s00228-004-0818-0

C.W. Hart, R.F. Naunton, Archives of Otolaryngology 80 (1964) 407. https://10.1001/archotol.1964.00750040419009

A. Elman, R. Gullberg, E. Nilsson, I. Rendahl, L. Wachtmeister, Scandinavian Journal of Rheumatology 5 (1976) 161. https://10.3109/03009747609165456

M. Huang, M. Li, F. Xiao, P. Pang, J. Liang, T. Tang, S. Liu, B. Chen, J. Shu, Y. You, National Science Review 7 (2020) 1428. https://10.1093/nsr/nwaa113.

A. Della Porta, K. Bornstein, A. Coye, T. Montrief, B. Long, M.A. Parris, The American Journal of Emergency Medicine 38 (2020) 2209. https://10.1016/j.ajem.2020.07.030

H. Lv, H. Zhao, T. Cao, L. Qian, Y. Wang, G. Zhao, Journal of Molecular Catalysis A: Chemical 400 (2015) 81. https://DOI.org/10.1016/j.molcata.2015.02.007

N.E. Elharony, I.E.T. El Sayed, A.G. Al-Sehemi, A.A. Al-Ghamdi, A.S. Abou-Elyazed, Catalysts 11 (2021) 1451. https://DOI.org/10.3390/catal11121451

Published

30-09-2023

Issue

Section

Full Articles

How to Cite

Study on Chloroquine phosphate loading capacity of MIL-100(Fe) synthesized by sonochemical method. (2023). Vietnam Journal of Catalysis and Adsorption, 12(3), 37-44. https://doi.org/10.51316/jca.2023.045

Share

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1-10 of 397

You may also start an advanced similarity search for this article.