Synthesis and photocatalytic activity evaluation of Au/g-C3N4 material for hydrogen evolution reaction

Authors

  • Giap Van Hung Hanoi University of Science and Technology Author
  • Norbert Steinfeldt Leibniz Institute for Catalysis, LIKAT, Rostock, Germany Author
  • Nguyen Thi Tuyet Mai School of Chemical Engineering, Hanoi University of Science and Technology Author

DOI:

https://doi.org/10.51316/jca.2022.064

Keywords:

Carbon Nitride, Gold nanoparticles, Hydrogen evolution reaction

Abstract

In this research, we report on the synthesis of Au/g-C3N4 material and study the effect of Au deposition on g-C3N4 to optimize its photocatalytic performance. The presence of Au significantly enhances the light absorption and reduces the recombination rate of electron-hole pairs leading to improve the H2 evolution efficiency. The highly improved efficiency is also due to the efficient transfer of photoelectrons between the g-C3N4 and Au molecules. The report indicates that the chemical reduction method to deposit gold nanoparticles on g-C3N4 is an appropriate method with significant photocatalytic efficiency. The results open up another path for the synthesis of Au/g-C3N4 for hydrogen evolution applications.

Downloads

Download data is not yet available.

References

P.W. Du, R. Eisenberg, Energ Environ Sci 5 (2012) 6012. https://doi.org/10.1039/c2ee03250c

A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, Jr., J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 311 (2006) 484. https://doi.org/10.1126/science.1114736

N.S. Lewis, D.G. Nocera, Proc Natl Acad Sci U S A 103 (2006) 15729. https://doi.org/10.1073/pnas.0603395103

J.C. Colmenares, R. Luque, J.M. Campelo, F. Colmenares, Z. Karpinski, A.A. Romero, Materials 2 (2009) 2228. https://doi.org/10.3390/ma2042228

C.C. Chen, W.H. Ma, J.C. Zhao, Chemical Society Reviews 39 (2010) 4206. https://doi.org/10.1039/b921692h

Y.Q. Qu, X.F. Duan, Chemical Society Reviews 42 (2013) 2568. https://doi.org/10.1039/c2cs35355e

Y.N. Tang, W.H. Di, X.S. Zhai, R.Y. Yang, W.P. Qin, Acs Catal 3 (2013) 405. 10.1021/cs300808r

Y.X. Song, Y.Y. Wang, P. Yang, J. Li, Mater Charact 169 (2020). ARTN 110655. https://doi.org/10.1016/j.matchar.2020.110655

J. Di, J.X. Xia, X.L. Chen, M.X. Ji, S. Yin, Q. Zhang, H.M. Li, Carbon 114 (2017) 601. https://doi.org/10.1016/j.carbon.2016.12.030

Y. Zhao, X. Zhang, T. Wang, T. Song, P. Yang, Int J Hydrogen Energ 45 (2020) 21409. https://doi.org/10.1016/j.ijhydene.2020.05.217

W.L. Wang, Q.K. Shang, W. Zheng, H. Yu, X.J. Feng, Z.D. Wang, Y.B. Zhang, G.Q. Li, J Phys Chem C 114 (2010) 13663. https://doi.org/10.1021/jp102320x

X. Zhang, P. Wang, P. Yang, S.P. Jiang, Int J Hydrogen Energ 45 (2020) 21523. https://doi.org/10.1016/j.ijhydene.2020.06.031

T. Dong, P. Wang, P. Yang, Int J Hydrogen Energ 43 (2018) 20607. https://doi.org/10.1016/j.ijhydene.2018.09.079

Z.G. Liu, G. Wang, P. Yang, J Ind Eng Chem 66 (2018) 262. https://doi.org/10.1016/j.jiec.2018.05.038

X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat Mater 8 (2009) 76. https://doi.org/10.1038/Nmat2317

Y. Wang, X.C. Wang, M. Antonietti, Angew Chem Int Edit 51 (2012) 68. https://doi.org/10.1002/anie.201101182

A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, J Mater Chem 18 (2008) 4893. https://doi.org/10.1039/b800274f

E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, New J Chem 26 (2002) 508. https://doi.org/10.1039/b111062b

X. Zhang, J.P. Veder, S. He, S.P. Jiang, Chem Commun 55 (2019) 1233. https://doi.org/10.1039/c8cc09633c

X.C. Wang, S. Blechert, M. Antonietti, Acs Catal 2 (2012) 1596. https://doi.org/10.1021/cs300240x

D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J.W. Tang, J Am Chem Soc 136 (2014) 12568. https://doi.org/10.1021/ja506386e

C. Ye, J.X. Li, Z.J. Li, X.B. Li, X.B. Fan, L.P. Zhang, B. Chen, C.H. Tung, L.Z. Wu, Acs Catal 5 (2015) 6973. https://doi.org/10.1021/acscatal.5b02185

D.D. Zheng, C.Y. Pang, Y.X. Liu, X.C. Wang, Chem Commun 51 (2015) 9706. https://doi.org/10.1039/c5cc03143e

C.J. Wang, P. Yang, B. Wang, J Electroanal Chem 880 (2021). ARTN 114943. https://doi.org/10.1016/j.jelechem.2020.114943

Y.Y. Wang, Y.Q. Cao, Y.J. Liu, P. Yang, Int J Hydrogen Energ 45 (2020) 16519. https://doi.org/10.1016/j.ijhydene.2020.04.110

P. Wang, B.B. Huang, Y. Dai, M.H. Whangbo, Phys Chem Chem Phys 14 (2012) 9813. https://doi.org/10.1039/c2cp40823f

S. Sarina, E.R. Waclawik, H.Y. Zhu, Green Chem 15 (2013) 1814. https://doi.org/10.1039/c3gc40450a

S. Patnaik, S. Martha, G. Madras, K. Parida, Phys Chem Chem Phys 18 (2016) 28502. https://doi.org/10.1039/c6cp04262g

R.C. Pawar, S. Kang, S.H. Ahn, C.S. Lee, Rsc Adv 5 (2015) 24281. https://doi.org/10.1039/c4ra15560b

L. Ge, C.C. Han, J. Liu, J Mater Chem 22 (2012) 11843. https://doi.org/10.1039/c2jm16241e

X.P. Sun, S.J. Dong, E. Wang, Angew Chem Int Edit 43 (2004) 6360. https://doi.org/10.1002/anie.200461013

J.Y. Qin, J.P. Huo, P.Y. Zhang, J. Zeng, T.T. Wang, H.P. Zeng, Nanoscale 8 (2016) 2249. https://doi.org/10.1039/c5nr06346a

M. Ayan-Varela, S. Villar-Rodil, J.I. Paredes, J.M. Munuera, A. Pagan, A.A. Lozano-Perez, J.L. Cenis, A. Martinez-Aonso, J.M.D. Tascon, Acs Appl Mater Inter 7 (2015) 24032. https://doi.org/10.1021/acsami.5b06974

B.C. Zhu, P.F. Xia, W.K. Ho, J.G. Yu, Appl Surf Sci 344 (2015) 188. https://doi.org/10.1016/j.apsusc.2015.03.086

F. Chang, C.L. Li, J.R. Luo, Y.C. Xie, B.Q. Deng, X.F. Hu, Appl Surf Sci 358 (2015) 270. https://doi.org/10.1016/j.apsusc.2015.08.124

Y.M. He, Y. Wang, L.H. Zhang, B.T. Teng, M.H. Fan, Appl Catal B-Environ 168 (2015) 1. 10.1016/j.apcatb.2014.12.017

Y. Zheng, Z.S. Zhang, C.H. Li, J Photoch Photobio A 332 (2017) 32. https://doi.org/10.1016/j.jphotochem.2016.08.005

S.Z. Liu, D.G. Li, H.Q. Sun, H.M. Ang, M.O. Tade, S.B. Wang, J Colloid Interf Sci 468 (2016) 176. https://doi.org/10.1016/j.jcis.2016.01.051

F.R. Pomilla, M.A.L.R.M. Cortes, J.W.J. Hamilton, R. Molinari, G. Barbieri, G. Marci, L. Palmisano, P.K. Sharma, A. Brown, J.A. Byrne, J Phys Chem C 122 (2018) 28727. https://doi.org/10.1021/acs.jpcc.8b09237

K.C. Christoforidis, Z. Syrgiannis, V. La Parola, T. Montini, C. Petit, E. Stathatos, R. Godin, J.R. Durrant, M. Prato, P. Fornasiero, Nano Energy 50 (2018) 468. https://doi.org/10.1016/j.nanoen.2018.05.070

J.F. Wang, J. Chen, P.F. Wang, J. Hou, C. Wang, Y.H. Ao, Appl Catal B-Environ 239 (2018) 578. https://doi.org/10.1016/j.apcatb.2018.08.048

X.S. Zhou, B. Jin, L.D. Li, F. Peng, H.J. Wang, H. Yu, Y.P. Fang, J Mater Chem 22 (2012) 17900. https://doi.org/10.1039/c2jm32686h

Y.Z. Guo, H.L. Jia, J.H. Yang, H. Yin, Z. Yang, J.F. Wang, B.C. Yang, Phys Chem Chem Phys 20 (2018) 22296. https://doi.org/10.1039/c8cp04241a

Published

31-12-2022

Issue

Section

Full Articles

How to Cite

Synthesis and photocatalytic activity evaluation of Au/g-C3N4 material for hydrogen evolution reaction. (2022). Vietnam Journal of Catalysis and Adsorption, 11(4), 18-25. https://doi.org/10.51316/jca.2022.064

Share

Similar Articles

1-10 of 202

You may also start an advanced similarity search for this article.