Synthesis of g-C3N4/biochar materials for photocatalytic degradation of doxycycline in aqueous solution under visible light irradiation

Authors

  • Bui Thi Minh Nguyet Dong Thap University Author
  • Nguyen Thanh Tuoi Lap Vo 2 high school, Tan My, Lap Vo, Dong Thap Author
  • Nguyen Van Hung Dong Thap University Author

DOI:

https://doi.org/10.62239/jca.2023.075

Keywords:

Graphitic carbon nitride, biochar, g-C3N4/biochar, photodegradation, doxycycline

Abstract

This study used reed biomass and urea as raw materials to produce biochar and g-C3N4 by pyrolysis under N2 atmospheric conditions at 400oC and 520oC, respectively. The g-C3N4/biochar materials were prepared by dispersing different masses of g-C3N4 onto the biochar surface and characterized by XRD, SEM, BET, FT-IR and UV-Vis-DRS methods. The photocatalytic degradation on doxycycline (DC) was investigated from the factors of pH and concentration. The characterization showed that g-C3N4 was well incorporated on the surface of biochar and increased the specific surface area of the material. The presence of biochar narrowed the band gap and increased light absorption at a wider wavelength range of g-C3N4. The composite of g-C3N4/biochar ratio of 2/1 presented the best performance, which is 2.38 times faster than g-C3N4 degrading DC. Kinetic studies showed that DC degradation followed pseudo-first-order kinetics with a determined rate constant kapp = 4,82×10-2 min−1 at a concentration of 5.0 mg/L DC. The study shows that the g-C3N4/biochar material has great potential in the treatment of antibiotic contaminated wastewater.

Downloads

Download data is not yet available.

References

A. Balakrishnan, M. Chinthala, R.K. Polagani, D.N. Vo, Environ Res 216 (2023) 114660. https://doi.org/10.1016/j.envres.2022.114660

J. Wang, R. Zhuan, Sci Total Environ 701 (2020). https://doi.org/10.1016/j.scitotenv.2019.135023

J. Wang, R. Zhuan, L. Chu, Sci Total Environ 646 (2019) 1385. https://doi.org/10.1016/j.scitotenv.2018.07.415

J. Ouyang, L. Zhou, Z. Liu, J.Y.Y. Heng, W. Chen, Separation and Purification Technology 253 (2020) https://doi.org/10.1016/j.seppur.2020.117536

M. Raaja Rajeshwari, S. Kokilavani, S. Sudheer Khan, Chemosphere 291 (2022) 132735. https://doi.org/10.1016/j.chemosphere.2021.132735

Yan, L. Yan, C. Jing, Applied Catalysis B: Environmental 244 (2019) 475. https://doi.org/10.1016/j.apcatb.2018.11.069

Z. Zhang, X. Chen, S. Chen, Q. Dong, X. Zhang, A. Jiang, D. Zhang, Y. Di, T. Li, Optical Materials 133 (2022). https://doi.org/10.1016/j.optmat.2022.113081

D. Liang, Y. Huang, F. Wu, J. Luo, X. Yi, J. Wang, X. Qiu, Applied Surface Science 487 (2019) 322. https://doi.org/10.1016/j.apsusc.2019.05.088

P. Qiu, Z. Liang, X. Liu, X. Qian, H. Cui, J. Tian, J Colloid Interface Sci 571 (2020) 318. https://doi.org/10.1016/j.jcis.2020.03.062

Z. Huang, L. Li, Z. Li, H. Li, J. Wu, Materials (Basel) 13 (2020). https://doi.org/10.3390/ma13173811

Y. Bai, M. Chen, Y. Liu, Y. Zhou, D. Gan, W. Tu, Journal of Materials Science: Materials in Electronics 33 (2022) 3631. https://doi.org/10.1007/s10854-021-07556-0

I. Mohammad, A. Jeshurun, P. Ponnusamy, B.M. Reddy, Materials Today Communications 33 (2022). https://doi.org/10.1016/j.mtcomm.2022.104788.

Y. Xiao, H. Lyu, C. Yang, B. Zhao, L. Wang, J. Tang, Journal of Environmental Sciences 103 (2021) 93. https://doi.org/10.1016/j.jes.2020.10.006

S.H. Cho, S. Lee, Y. Kim, H. Song, J. Lee, Y.F. Tsang, W.H. Chen, Y.K. Park, D.J. Lee, S. Jung, E.E. Kwon, Sci Total Environ 868 (2023) 161655. https://doi.org/10.1016/j.scitotenv.2023.161655

Z. Pan, L. Qian, J. Shen, J. Huang, Y. Guo, Z. Zhang, Chemical Engineering Journal 426 (2021) 130385. https://doi.org/10.1016/j.cej.2021.130385

Y. He, Y. Wang, J. Hu, K. Wang, Y. Zhai, Y. Chen, Y. Duan, Y. Wang, W. Zhang, Journal of Materials Research and Technology 11 (2021) 1308. https://doi.org/10.1016/j.jmrt.2021.01.077

S.Y. Tameu Djoko, H. Bashiri, E.T. Njoyim, M. Arabameri, S. Djepang, A.K. Tamo, S. Laminsi, M. Tasbihi, M. Schwarze, R. Schomäcker, Journal of Photochemistry and Photobiology A: Chemistry 398 (2020) 112596. https://doi.org/10.1016/j.jphotochem.2020.112596

L. Pi, R. Jiang, W. Zhou, H. Zhu, W. Xiao, D. Wang, X. Mao, Applied Surface Science 358 (2015) 231. https://doi.org/10.1016/j.apsusc.2015.08.176

M. Lin, F. Li, W. Cheng, X. Rong, W. Wang, Chemosphere 288 (2022) 132620. https://doi.org/10.1016/j.chemosphere.2021.132620

M. Kamaraj, N.R. Srinivasan, G. Assefa, A.T. Adugna, M. Kebede, Environmental Technology & Innovation 17 (2020) 100540. https://doi.org/10.1016/j.eti.2019.100540

M. Jafari, M.R. Rahimi, M. Ghaedi, H. Javadian, A. Asfaram, J Colloid Interface Sci 507 (2017) 172. https://doi.org/10.1016/j.jcis.2017.07.056

N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A. Hossein Panahi, M. Esmati, T.J. A-Musawi, Advanced Powder Technology 31 (2020) 875. https://doi.org/10.1016/j.apt.2019.12.006

S. Cao, J. Low, J. Yu, M. Jaroniec, Adv Mater 27 (2015) 2150. https://doi.org/10.1002/adma.201500033

N. Van Hung, B.T.M. Nguyet, N.H. Nghi, D.Q. Khieu, Journal of Inorganic and Organometallic Polymers and Materials 31 (2020) 446. https://doi.org/10.1007/s10904-020-01734-z

J. Bolobajev, M. Trapido, A. Goi, Chemosphere 153 (2016) 220. https://doi.org/10.1016/j.chemosphere.2016.03.042

O. Bechambi, S. Sayadi, W. Najjar, Journal of Industrial and Engineering Chemistry 32 (2015) 201. https://doi.org/10.1016/j.jiec.2015.08.017

D. Balarak, C.A. Igwegbe, P.C. Onyechi, Sigma Journal of Engineering and Natural Sciences 37 (2019) 1235. https://dergipark.org.tr/en/pub/sigma/issue/65442/1010451

M.M. El Bouraie, S.S. Ibrahim, Journal of Inorganic and Organometallic Polymers and Materials 31 (2020) 344. https://doi.org/10.1007/s10904-020-01711-6

I. Prabha, S. Lathasree, Materials Science in Semiconductor Processing 26 (2014) 603. https://doi.org/10.1016/j.mssp.2014.05.031

L. Meng, W. Yin, S. Wang, X. Wu, J. Hou, W. Yin, K. Feng, Y.S. Ok, X. Wang, Chemosphere 239 (2020) 124713. https://doi.org/10.1016/j.chemosphere.2019.124713.

W. Liu, J. Zhou, Z. Hu, Separation and Purification Technology 227 (2019) 115665. https://doi.org/10.1016/j.seppur.2019.06.003

W. Liu, J. Zhou, J. Zhou, Journal of Materials Science 54 (2018) 3294. https://doi.org/10.1007/s10853-018-3090-x

J. He, J. Ye, K. Ge, J. Cao, C. Fu, Z. Li, Y. Zhang, Y. Yang, Catalysis Science & Technology 10 (2020) 4809. https://doi.org/10.1039/D0CY00463D

Z. Zhang, Z. Pan, Y. Guo, P.K. Wong, X. Zhou, R. Bai, Applied Catalysis B: Environmental 261 (2020) 118212. https://doi.org/10.1016/j.apcatb.2019.118212

Published

09-03-2024

Issue

Section

Full Articles

How to Cite

Synthesis of g-C3N4/biochar materials for photocatalytic degradation of doxycycline in aqueous solution under visible light irradiation. (2024). Vietnam Journal of Catalysis and Adsorption, 12(4), 115-125. https://doi.org/10.62239/jca.2023.075

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 103

You may also start an advanced similarity search for this article.