Nonenzymatic formaldehyde sensors using nickel oxide based electrode fabricated by electrochemical method

Authors

  • Nguyen Van Truong Thai Nguyen University of Technology Author
  • Thai Minh Duc Thai Nguyen University of Education Author
  • Tran Quoc Toan Thai Nguyen University of Education Author
  • Pham Hong Chuyen Thai Nguyen University of Education Author
  • Dang Van Thanh Thai Nguyen University of Medicine and Pharmacy Author
  • Nguyen Quoc Dung Thai Nguyen University of Technology Author

DOI:

https://doi.org/10.51316/jca.2021.100

Keywords:

Nickel oxide, ITO, formaldehyde, electrochemical sensors

Abstract

NiO materials were fabricated by electrochemical exfoliation combined with ultrasonic vibration to produce nano-sized particles. By electrophoresis, NiO particles dispersed in IPA solvent (isopropyl alcohol) were precipitated on the ITO substrate acting as the cathode. The morphology and structure of the materials were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The role of electrophoresis potential, electrophoresis time on electrode formation was investigated when studying the effect on electrochemical properties of the electrode for formaldehyde in aqueous solution. As a result, with the NiO dispersion system (0.1 g NiO in 50 mL IPA), the distance between the ITO electrode (negative electrode) and the Pt plate (positive electrode) of 2 cm, the electrophoresis potential of 10 V, electrophoresis time of 3 min is optimized for fabrication of NiO/ITO electrode in formaldehyde electrochemical sensor. Sensitivity and linear range at different electrode potentials were investigated when determining the concentration of formaldehyde in water.

Downloads

Download data is not yet available.

References

H. Singh, R. Yadav, S. Farooqui, O. Dudnyk, A. Sinha, Int. J. Hydrogen Energy 44 (2019) 19573-19584. https://doi.org/10.1016/j.ijhydene.2019.05.203

A. Ramu, M.A. Kumari, M.S. Elshikh, H.H. Alkhamis, A.F. Alrefaei, D. Choi, Chemosphere 271 (2021) 129475-129483. https://doi.org/10.1016/j.chemosphere.2020.129475

S.M. Roopan, G. Elango, D.D. Priya, I. Asharani, B. Kishore, S. Vinayprabhakar, N. Pragatheshwaran, K. Mohanraj, R. Harshpriya, S. Shanavas, J. Mol. Liq. 293 (2019) 111509. https://doi.org/10.1016/j.molliq.2019.111509

C. Kuang, W. Zeng, H. Ye, Y. Li, Physica E 97 (2018) 314-316. https://doi.org/10.1016/j.physe.2017.12.006

E. Turgut, Ö. Çoban, S. Sarıtaş, S. Tüzemen, M. Yıldırım, E. Gür, Appl. Surf. Sci. 435 (2018) 880-885. https://doi.org/10.1016/j.apsusc.2017.11.133

D. Meng, D. Liu, G. Wang, Y. Shen, X. San, M. Li, F. Meng, Sens. Actuators, B 273 (2018) 418-428. https://doi.org/10.1016/j.snb.2018.06.030

M. Wang, Y. Ma, Y. Fo, Y. Lyu, X. Zhou, Int. J. Hydrogen Energy 45 (2020) 19357-19369. https://doi.org/10.1016/j.ijhydene.2020.05.131

W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, Adv. Energy Mater 8 (2018) 1703519. https://doi.org/10.1002/aenm.201703519

Z. Zhu, E. Guo, Z. Wei, H. Wang, J. Power Sources 373 (2018) 132-138. https://doi.org/10.1016/j.jpowsour.2017.10.091

R. Ahmad, M. Khan, N. Tripathy, M.I.R. Khan, A. Khosla, J. Electrochem. Soc. 167 (2020) 107504. https://doi.org/10.1149/1945-7111/ab9757

Z. Li, Vacuum 143 (2017) 50-53. https://doi.org/10.1016/j.vacuum.2017.05.038

R.L. Fomekong, H.T. Kamta, J.N. Lambi, D. Lahem, P. Eloy, M. Debliquy, A. Delcorte, J. Alloys Compd. 731 (2018) 1188-1196. https://doi.org/10.1016/j.jallcom.2017.10.089

Y. Xu, X. Tian, Y. Fan, Y. Sun, Sens. Actuators, B 309 (2020) 127719. https://doi.org/10.1016/j.snb.2020.127719

V. Sibirny, O. Demkiv, H. Klepach, T. Honchar, M. Gonchar, Food Chem. 127 (2011) 774-779. https://doi.org/10.1016/j.foodchem.2010.12.146

M. Baez-Gaxiola, C. Fernández-Sánchez, E. Mendoza, Ana. Methods 7 (2015) 538-542. https://doi.org/10.1039/C4AY02023E

H. Mei, W. Wu, B. Yu, H. Wu, S. Wang, Q. Xia, Sens. Actuators, B 223 (2016) 68-75. https://doi.org/10.1016/j.snb.2015.09.044

D. Trivedi, J. Crosse, J. Tanti, A.J. Cass, K.E. Toghill, Sens. Actuators, B 270 (2018) 298-303. https://doi.org/10.1016/j.snb.2018.05.035

Š. Trafela, J. Zavašnik, S. Šturm, K.Ž. Rožman, Electrochim. Acta 309 (2019) 346-353. https://doi.org/10.1016/j.electacta.2019.04.060

S.A. Al-Jendan, W. Alarjan, I. Elghamry, A. Touny, M. Saleh, M.E. Abdelsalam, Int. J. Hydrogen Energy 45 (2020) 14320-14333. https://doi.org/10.1016/j.ijhydene.2020.03.141

M.A. Ehsan, A. Rehman, Ana. Methods 12 (2020) 4028-4036. https://doi.org/10.1039/D0AY00821D

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

Nonenzymatic formaldehyde sensors using nickel oxide based electrode fabricated by electrochemical method. (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 103-107. https://doi.org/10.51316/jca.2021.100

Share

Similar Articles

1-10 of 120

You may also start an advanced similarity search for this article.