Synthesis of Fe3O4/MIL-101 material and evaluation of photocatytic activity
DOI:
https://doi.org/10.51316/jca.2020.047Keywords:
Fe3O4/MIL-101, photocatalytic, visible light, methylene blue fontAbstract
In the present work, results synthesis of Fe3O4/MIL-101 material and evaluation of photocatytic activity under visible light region. Characterization of Fe3O4/MIL-101 was investigated by using techniques including X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), IR spectra and UV-visible absorption spectrometer. Evaluation of the photocatalytic activity of Fe3O4/MIL-101 material on the conversion of blue methylen solution under degradation in the visible light region.
Downloads
References
J. Wang, C. Wang, W. Lin, Catalysis. 2 (2012) 2630–2640 https://doi.org/10.1021/cs3005874
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki. Science 309 (2005) 2040–2042. https://doi.org/10.1126/science.1116275
Zhewei Yu., Universite Paris Saclay, 2016, p. 867.
Zhijuan Zhang, Sisi Huang, Shikai Xian, Hongxia Xi, and Zhong Li. Energy & Fuels, Vol. 25 (2011) 835–842. https://doi.org/10.1021/ef101548g
L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp. Chem. Rev. 112 (2012) 1105–1125. https://doi.org/10.1021/cr200324t
H.B.T. Jeazet, C. Staudt, C. Janiak. Chem. Commun. 48 (2012) 2140–2142. https://doi.org/10.1039/C2CC16628C
A. Corma, H. García, F.X. Llabrés i Xamena. Chem. Rev. 110 (2010) 4606–4655. https://doi.org/10.1021/cr9003924
N.T.S. Phan, T.T.Nguyen, Q.H. Luu, L.T.L. Nguyen. Catal. A 363-364(2012)178-185. http://doi.org/10.1016/j.molcata. 2012.06.07
Mrinal Saikia, Diganta Bhuyan and Lakshi Saikia. New J. Chem. Vol. 39 (2015) 64–67. https://doi.org/10.1039/C4N J01312C
. Myung-Geun Jeong, Dae Han Kim, Su-Kyung Lee, Ju Ha Lee, Sang Wook Han, Eun Ji Park, Katie A. Cychosz, Matthias Thommes, Young Kyu Hwang, Jong-San Chang, Young Dok Kim. Microporous and Mesoporous Materials, Vol.221(2016)101–107.https://doi.org/10.1016/j. microm eso .2015. 09.027
Martin Lammert, Stephan Bernt, Frederik Vermoortele Dirk E. De Vos and Norbert Stock. Inorganic Chemistry, Vol.52(2013)8521-8528. https://doi.org/10.1021/ic40053 28
Babak Samiey, Chil-Hung Cheng, and Jiangning Wu. Materials, Vol. 7, Iss. 2 (2014), pp. 673–726. https://doi: 10.3390/ma7020673.
Hongli Liu, Yaling Liu, Yingwei Li, Zhiyong Tang and Huanfeng Jiang.The Journal of Physical Chemistry C, Vol. 114(2010)13362–13369. https://doi.org/10.1021/jp10566 6f
Yingyi Pan, Bizhen Yuan, Yingwei Li and Dehua He. Chemical Communications, Vol. 46 (2010) 13, pp. 2280–2289. https://doi.org/10.1039/B922061E
T. Wang, P. Zhao, N. Lu, H. Chen, C. Zhang, X. Hou. Chem. Eng. J. Vol. 295 (2016) 403–413. https://doi.org/10.1016/j.cej.2016.03.016
Z.W. Jiang, Y.F.L. Fu Qiang Dai, C.Z. Huang. RSC Adv. Vol. 6(2016)86443-86446. https://doi.org/10.1039/C6RA1917 0C
A.E. Greenberg, American Public Health Association, Washington, DC, 1985, pp 78
Chao-Feng Zhang, Ling-Guang Qiu, Fei Ke, Yu-Jun Zhu, Yu-Peng Yuan G.-S.X. and X.J. J. Mater. Chem. A, (2013). 4329-14334. https://doi.org/10.1039/C3TA13030D
Esparza R., Perez R.A., Ruíz-baltazar A., et al. Journal of Nanomaterials,Vol.6(2015)1-8. https://doi.org/10.1155/2015/240948
Liu Q., Ning L., Zheng S., et al. Scientific Reports. Vol.3 (2013), 1–6. https://doi.org/10.1038/srep02916
Press A.I.N. Journal of Magnetism and Magnetic Materials.Vol.279(2004).210–217. https://doi.org/10.1016/j.jmmm.2004.01.094
Zhang J.L., Srivastava R.S., Misra R.D.K. Langmuir, Vol.23 (2007), 6342–6351. https://doi.org/10.1021/la0636199