Synthesis and characterization of Z-scheme heterostructure CoWO4/g-C3N4 as a visible-light photocatalyst for removal of organic pollutant
DOI:
https://doi.org/10.51316/jca.2021.029Keywords:
Z–scheme photocatalyst, g-C3N4, CoWO4, visible lightAbstract
In this study, direct Z–scheme heterostructure CoWO4/g-C3N4 was synthesized by a facile hydrothermal method. The structural, morphological properties of the prepared samples were characterised by XRD, SEM, UV–Vis and PL measurements. The as-obtained heterostructure CoWO4/g-C3N4 exhibited enhanced photocatalytic activities toward the degradation of Rhodamine B under visible light irradiation with 92% Rhodamine B removal after 80 minutes irritation, which exceeded pristine g-C3N4 and CoWO4. The enhanced photocatalytic performance ascribed to interfacial contact between g-C3N4 and CoWO4, thus further inhibiting the recombination of photogenerated electron/hole pairs. It is anticipated that the construction of Z–scheme heterostructure CoWO4/g-C3N4 is an effective strategy to develop high-performance photocatalysts for the degradation of organic pollutants in water.
Downloads
References
R. M. Gunnagol and M. H. K. Rabinal, ChemistrySelect 3 (9) (2018) 2578–2585. https://doi.org/10.1002/slct.201703081
M. Roskamp, A. K. Schaper, J. H. Wendorff, and S. Schlecht, Eur. J. Inorg. Chem. 17 (2007) 2496–2499. https://doi.org/10.1002/ejic.200601154
D. Jiang, P. Xiao, L. Shao, D. Li, and M. Chen, Ind. Eng. Chem. Res. 56 (31) (2017), 8823–8832. https://doi.org/10.1021/acs.iecr.7b01840
B. Chai, C. Liu, J. Yan, Z. Ren, Z.-j. Wang, Appl. Surf. Sci. 448 (2018) 1-8. https://doi.org/10.1016/j.apsusc.2018.04.116
Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv, G. Liu, Appl. Catal. B . 229 (2018) 96-104. https://doi.org/10.1016/j.apcatb.2018.02.011
T. Xiao, Z. Tang, Y. Yang, L. Tang, Y. Zhou, Z. Zou, Applied Catalysis B: Environmental 220 (2018) 417-428. https://doi.org/10.1016/j.apcatb.2017.08.070
S. L. Prabavathi, K. Govindan, K. Saravanakumar, A. Jang, and V. Muthuraj, J. Ind. Eng. Chem. 80 (2019) 558-567. https://doi.org/10.1016/j.jiec.2019.08.035
X. Wang et al., Nat. Mater. 8 (1) (2009) 76–80. https://doi.org/10.1038/nmat2317
S. Sahoo, A. Behera, S. Mansingh, B. Tripathy, and K. Parida, Mater. Today Proc. 35 (2020) 193-197. https://doi.org/10.1016/j.matpr.2020.04.246
K. Saravanakumar, M. M. Ramjan, P. Suresh, and V. Muthuraj, J. Alloys Compd. 664 (2016) 149–160. https://doi.org/10.1016/j.jallcom.2015.12.245
Y. Bai et al., Appl. Catal. B Environ. 194 (2016) 98–104. https://doi.org/10.1016/j.apcatb.2016.04.052
Nguyễn Văn Nội, Vật liệu xúc tác quang vùng khả kiến ứng dụng trong xử lý ô nhiễm môi trường, NXB Đại học Quốc gia Hà Nội, 2017, p. 112-132.
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.05-2019.336