Synthesis of g-C3N4/InVO4 materials as novel photocatalysts for degradation of antibiotics under visible light
DOI:
https://doi.org/10.51316/jca.2021.027Keywords:
Graphitic carbon nitride, indium vanadate, photocatalyst, photodegradation, antibioticsAbstract
Novel g-C3N4/InVO4 materials were synthesized by a fabricated via hydrothermal and heating methods. The physicochemical properties of the photocatalysts were investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), Photoluminescence spectroscopy (PL), UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS) and Energy dispersive X-ray spectroscopy (EDX). The photocatalytic performances were evaluated by degradation of tetracycline (TC). The g-C3N4/InVO4 composite at a weight ratio of 10 % exhibited the most excellent photocatalytic activity for TC degradation under visible irradiation which was more active than that of pure components.
Downloads
References
R. Jaiswal, J. Bharambe, N. Patel, A. Dashora, D. C. Kothari, A. Miotello, Applied Catalysis B: Environmental 168 (2015) 333-341. http://dx.doi.org/10.1016/j.apcatb.2014.12.053
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezarig, D. D. Dionysioua, Applied Catalysis B: Environmental,125 (2012) 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036
M. Mollavali, C. Falamaki, S. Rohani, International Journal of Hydrogen Energy, 40 (2015) 12239–12252. http://dx.doi.org/10.1016/j.ijhydene.2015.07.069
S. J Hong, S. Lee, Jang J. S. Jang, J. S. Lee, Energy Environmental Science, 4 (2011) 1781–1787. http://doi.org/10.1039/c0ee00743a
J. Xu, H. T. Wu, X. Wang, B. Xue, Y. X. Li and Y. Cao., Physical Chemistry Chemical Physics, 15 (2013) 4510– 4517. http://doi.org/10.1039/c3cp44402c
A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Muller, R. Schlogl and J. M. Carlsson., Journal of Material Chemistry, 18 (2018) 4893–4908. http://doi:10.1039/b800274f
Z. Zang, M. Wang, W. Cui, H. Sui., RSC Advances 7 (2017) 8167-8177. http://doi.org/10.1007/s10971-014-3454-x
Q. Xie, W. He, S. Liu, C. Li, J. Zhang, P. K. Wong, Chinese Journal of Catalysis, 41 (2020) 140–153. https://doi.org/10.1016/S1872-2067(19)63481-9
Y. Song, J. Gu, K. Xia, J. Yi, H. Chen, X. She, Z. Chen, C. Ding, H. Li, H. Xu, Applied Surface Science, 467 (2019) 56-64. https://doi.org/10.1016/j.apsusc.2018.10.118
L. Zhang, H. Fu, C. Zhang, Y. Zhu, Journal of Solid State Chemistry 179 (2006) 804-811. http://doi.org/10.1002/chin.200624017
J. Shena, H. Yangab, Q. Shenab, Z. You (2014), Procedia Engineering 94 (2014) 64 – 70. http://doi.org/10.1016/j.proeng.2013.11.043
Y. Wang, G. Z Cao, Journal of Materials Chemistry 17 (2007) 894-899. http://doi.org/10.1557/proc-0922-u01-06
J. Shen, H. Yang, Q. Shen, Y. Feng, Journal of Material Science 48 (2013) 7574-7580. http://doi.org/10.1007/s10853-013-7573-5
B. Hu, F. Cai, T. Chen, M. Fan, C. Song, X. Yan, W. Shi, ACS Applied Materials & Interfaces 7 (2015) 18247-18256. http://doi.org/10.1021/acsami.5b05715
Y. Zengyu, S. Yuxuan, Y. Yang, H. Wang, T. Qin, F. Zhang, Q. Shen, H. Yang, Applied Catalysis B: Environmental 213 (2017) 127-135. http://doi:10.1016/j.apcatb.2017.05.015
P. Tang, H. Chen, F. Cao, G. Pan, K. Wang, Advanced Material Resource 284 (2011) 734-737. http://doi:10.4028/www.scientific.net/amr.284-286.734
L. Gu, J. Wang, Z. Zou, X. Han, Journal of Hazardous Material 268 (2014) 216–223. http://doi.org/10.1016/j.jhazmat.2014.01.021
Y. X. Zhang, D. Ma, J. Wu, Q. Z Zhang, X.J Xin, N. Bao, Applied Surface Science 353 (2015) 1260–1268. https://doi.org/10.1016/j.apsusc.2015.06.143
J. M. Yao, C. K. Lee, S. J. Yang, C. S. Hwang, Journal of Alloys Compound 481 (2009) 740–745. http://doi.org/10.1016/j.jallcom.2009.03.093
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.99-2019.49