Comparative study on catalytic reactivity of colloidal Ni(0)NPs and Pd(0)NPs towards semi-hydrogenation of alkynes
DOI:
https://doi.org/10.51316/jca.2021.033Keywords:
Nickel, palladium, nanoparticles, catalysis, semi-hydrogenationAbstract
In this study, nickel nanoparticles (Ni(0)NPs) and palladium nanoparticles (Pd(0)NPs) were prepared in neat glycerol under hydrogen pressure by the bottom-up approach. The formation of zero-valent metal nanospheres was evidenced by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) analyses. Regarding their catalytic behaviors, Ni(0)NPs permitted to obtain the corresponding (Z)-alkenes in the semi-hydrogenation of both internal and terminal alkynes. In contrast, over-hydrogenations of such alkynes towards the alkanes were observed over Pd(0)NPs after only 2 hours of reaction. Interestingly, the catalytic phase of Ni(0)NPs in glycerol could be recycled up to 5 times, preserving their catalytic activity and selectivity.
Downloads
References
Z. Wang, L. Yang, R. Zhang, L. Li, Z. Cheng, Z. Zhou, Catal. Today 264 (2016) 37-43. https://doi.org/10.1016/j.cattod.2015.08.018
J.A. Delgado, O. Benkirane, C. Claver, D. Curulla-Ferréc, C. Godard, Dalton Trans. 46 (2017) 12381-12403. https://doi.org/10.1039/C7DT01607G
M. Crespo-Quesada, F. Cárdenas-Lizana, A.-L. Dessimoz, L. Kiwi-Minsker, ACS Catal. 2 (2012) 1773-1786. https://doi.org/10.1021/cs300284r
H. Lindlar, Helv. Chim. Acta 35 (1952) 446-450. https://doi.org/10.1002/hlca.19520350205
N. López, C. Vargas-Fuentes, Chem. Commun. 48 (2012) 1379-1391. https://doi.org/10.1039/C1CC14922A
A. Yarulin, I. Yuranov, F. Cárdenas-Lizana, D.T.L. Alexander, L. Kiwi-Minsker, Appl. Catal. A 478 (2014) 186-193. https://doi.org/10.1016/j.apcata.2014.04.003
V. Polshettiwar, B. Baruwatia, R.S. Varma, Green Chem. 11 (2009) 127-131. https://doi.org/10.1039/B815058C
V. Panwar, A. Kumar, R. Singh, P. Gupta, S.S. Ray, S.L. Jain, Ind. Eng. Chem. Res. 54 (2015) 11493-11499. https://doi.org/10.1021/acs.iecr.5b02888
S. Payra, A. Saha, S. Banerjee, RSC Adv. 6 (2016) 52495-52499. https://doi.org/10.1039/C6RA09659J
K. Schütte, A. Doddi, C. Kroll, H. Meyer, C. Wiktor, C. Gemel, G. Tendeloo, R.A. Fischer, C. Janiak, Nanoscale 6 (2014) 5532-5544. https://doi.org/10.1039/C4NR00111G
L. Chen, H. Li, W. Zhan, Z. Cao, J. Chen, Q. Jiang, Y. Jiang, Z. Xie, Q. Kuang, L. Zheng, ACS Appl. Mater. Interfaces 8 (2016) 31059-31066. https://doi.org/10.1021/acsami.6b11567
S. Carenco, A. Leyva-Pérez, P. Concepción, C. Boissière, N. Mézailles, C. Sanchez, A. Corma, Nano Today 7 (2012) 21-28. https://doi.org/10.1016/j.nantod.2011.12.003
F. Alonso, I. Osante, M. Yus, Adv. Synth. Catal. 348 (2006) 305-308. https://doi.org/10.1002/adsc.200505327
H. Konnertha, M.H.G. Prechtl, Chem. Commun. 52 (2016) 9129-9132. https://doi.org/10.1039/C6CC00499G
J. Dupont, J.D. Scholten, Chem. Soc. Rev. 39 (2010) 1780-1804. https://doi.org/10.1039/B822551F
D. Astruc (Ed.), Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2008.
H. Dong, Y.-C. Chen, C. Feldmann, Green Chem. 17 (2015) 4107-4132. https://doi.org/10.1039/C5GC00943J
Y. Gu, F. Jérôme, Green Chem. 12 (2010) 1127-1138. https://doi.org/10.1039/C001628D
S. Tagliapietra, L. Orio, G. Palmisano, A. Penoni, G. Cravotto, Chem. Pap. 69 (2015) 1519-1531. https://doi.org/10.1515/chempap-2015-0166
K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Dalton Trans. 44 (2015) 17883-17905. https://doi.org/10.1039/C5DT02964C
T.B. Dang, A.T.K. Tran, J. Sci. Tech. 17 (2019) 21-23. http://doi.org/10.31130/JST-UD2019-093E
T. Kusukawa, G. Niwa, T. Sasaki, R. Oosawa, W. Himeno, M. Kato, Bull. Chem. Soc. Jpn. 86 (2013) 351-353. https://doi.org/10.1246/bcsj.20120300
Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem., Int. Ed. 48 (2009) 60-103. https://doi.org/10.1002/anie.200802248
C.N.R. Rao, H.S.S.R. Matte, R. Voggu, A. Govindaraj, Dalton Trans. 41 (2012) 5089-5120. https://doi.org/10.1039/C2DT12266A