Degradation of 4-nitrophenol in wastewater by nickel-iron nanocatalysts

Authors

  • Thanh Thien Co University of Science-VNUHCM Author
  • Ngoc Hai Yen Nguyen University of Science-VNUHCM Author
  • Thi Ngoc Quynh Tran University of Science-VNUHCM Author
  • Minh Nguyet Huynh University of Science-VNUHCM Author
  • Ha Minh Thu Thai University of Science-VNUHCM Author
  • Thi Bich Phuong Vo University of Science-VNUHCM Author
  • Thi Yen Nhi Nguyen University of Science-VNUHCM Author

DOI:

https://doi.org/10.62239/jca.2024.077

Keywords:

4-Nitrophenol, NiFe nanoparticles, nanocatalyst

Abstract

Nickel-iron (NiFe) nanoparticles supported on activated carbon were synthesized using NaBH4 as a reducing agent and PVP as a stabilizing agent to prevent the nanoparticles from agglomerating or oxidizing. The entire process is carried out under an inert atmosphere to further prevent oxidation and ensure the purity of the NiFe nanoparticles. The physicochemical properties of the resulting NiFe/C samples were analyzed using SEM, TEM, BET, EDX, and XRD techniques. The NiFe nanoparticles, ranging from 3-11 nm, were evenly dispersed on the activated carbon, exhibiting a specific surface area of 850 m2/g. A complete conversion (100%) of 4-Nitrophenol within a 6-hour reaction period indicates that the catalyst is highly effective. This suggests that the Nickel-Iron (NiFe) nanoparticles supported on activated carbon are performing exceptionally well in the oxidation reaction to detoxify 4-NP. This study provides a comprehensive understanding of the synthesis, structure, composition, and catalytic performance of the NiFe nanocatalyst.

Downloads

Download data is not yet available.

References

Zhang, X.; Shi, Z.; Liu, H.; Niu, Y. Inorg Chem Commun 156 (2023) 111219. https://doi.org/10.1016/j.inoche.2023.111219

Wang, K.; Ma, J.; Yao, Z.; Zhang, W.; Komarneni, S., Ceram Int 42 (14) (2016) 15981–15988. https://doi.org/10.1016/j.ceramint.2016.07.103

Samuel, M. S.; Bhattacharya, J.; Parthiban, C.; Viswanathan, G.; Pradeep Singh, N. D., Ultrason Sonochem 49 (2018) 215–221. https://doi.org/10.1016/j.ultsonch.2018.08.004

Mehmood, S.; Janjua, N. K.; Saira, F.; Fenniri, H., Journal of Spectroscopy 2016, (2016). https://doi.org/10.1155/2016/6210794

Mahmoud, M. A.; Narayanan, R.; El-Sayed, M. A., Acc Chem Res 46 (8) (2013) 1795–1805. https://doi.org/10.1021/ar3002359

Hashimi, A. S.; Nohan, M. A. N. M.; Chin, S. X.; Zakaria, S.; Chia, C. H., Nanomaterials 9 (7) (2019) 936 https://doi.org/10.3390/nano9070936

Das, J.; Velusamy, P., J Taiwan Inst Chem Eng 45 (5) (2014) 2280–2285. https://doi.org/10.1016/j.jtice.2014.04.005.

Ding, Q.; Kang, Z.; Cao, L.; Lin, M.; Lin, H.; Yang, D. P., Appl Surf Sci 510 (2020) 145526. https://doi.org/10.1016/j.apsusc.2020.145526

Gao, D.; Li, S.; Wang, X.; Xi, L.; Lange, K. M.; Ma, X.; Lv, Y.; Yang, S.; Zhao, K.; Loussala, H. M.; Duan, A.; Zhang, X.; Chen, G., J Catal 370 (2019) 385–403. https://doi.org/10.1016/j.jcat.2019.01.011

Serrà, A.; Artal, R.; Pozo, M.; Garcia-Amorós, J.; Gómez, E., Catalysts 10 (4) (2020) 458 https://doi.org/10.3390/catal10040458

Chen, Y.; Sun, F.; Huang, Z.; Chen, H.; Zhuang, Z.; Pan, Z.; Long, J.; Gu, F., Appl Catal B 215 (2017) 8–17. https://doi.org/10.1016/j.apcatb.2017.03.082

Lu, Y.; Wan, X.; Li, L.; Sun, P.; Liu, G., Journal of Materials Research and Technology12 (2021 ) 1832–1843. https://doi.org/10.1016/j.jmrt.2021.03.093

Jun Min, Jun-Jie Zhang, Ning-Yi Zhou, Appl Environ Microbiol 80 (19) (2014) 6212–6222. https://doi.org/10.1128/AEM.02093-14

Wang, J. C.; Li, Y.; Li, H.; Cui, Z. H.; Hou, Y.; Shi, W.; Jiang, K.; Qu, L.; Zhang, Y. P. A, J Hazard Mater 379 (2019) 120806. https://doi.org/10.1016/j.jhazmat.2019.120806

Serrà, A.; Artal, R.; García-Amorós, J.; Sepúlveda, B.; Gómez, E.; Nogués, J.; Philippe, L., Advanced Science 7(3) (2020) 1902447. https://doi.org/10.1002/advs.201902447

J. Kiwi, C. Pulgarin, P. Peringer, Applied Catalysis B: Environmental 3(4) (1994) 335-350. https://doi.org/10.1016/0926-3373(94)00008-5

Xie, F.; Xu, Y.; Xia, K.; Jia, C.; Zhang, P. Ultrason Sonochem 2016 28 (2016) 199–206. https://doi.org/10.1016/j.ultsonch.2015.07.011

Serrà, A.; Alcobé, X.; Sort, J.; Nogués, J.; Vallés, E., J Mater Chem A Mater 4 (40) (2016) 15676–15687. https://doi.org/10.1039/c6ta07149j

Chen, G. Sep Purif Technol 38 (1) (2004) 11–41. https://doi.org/10.1016/j.seppur.2003.10.006

Rodríguez Molina, H.; Santos Muñoz, J. L.; Domínguez Leal, M. I.; Reina, T. R.; Ivanova, S.; Centeno Gallego, M. Á.; Odriozola, J. A., Front Chem 7 (2019) https://doi.org/10.3389/fchem.2019.00548

Published

05-01-2025

Issue

Section

Full Articles

How to Cite

Degradation of 4-nitrophenol in wastewater by nickel-iron nanocatalysts. (2025). Vietnam Journal of Catalysis and Adsorption, 13(4), 74-78. https://doi.org/10.62239/jca.2024.077

Share

Funding data

Similar Articles

1-10 of 157

You may also start an advanced similarity search for this article.