PtRu, PtRuFe and PtRuNi alloy electrocatalysts decorated on composite support C-MWCNTs for direct methanol fuel cells

Authors

  • Dang Long Quan Ho Chi Minh City University of Technology, VNU-HCM | Can Tho University Author
  • Nguyen Minh An Can Tho University Author
  • Thach Phuc Vinh Can Tho University Author
  • Nguyen Thi Thanh Ngan Can Tho University Author
  • Khuu Lil Owin Can Tho University Author
  • Le Phuong Niem Can Tho University Author
  • Do Cam Tu Can Tho University Author
  • Vu Xuan Truong Can Tho University Author
  • Le Huu Phuoc Can Tho University of Medicine and Pharmacy Author

DOI:

https://doi.org/10.51316/jca.2022.014

Keywords:

Composite support, cyclic voltammetry, electrocatalyst, methanol oxidation, nanoparticle

Abstract

In this work, carbon Vulcan XC-72 (C) and carbon nanotubes (CNTs) supported ternary platinum-ruthenium-iron (PtRuFe) and platinum-ruthenium-nickel (PtRuNi) alloy nanoparticles have been synthesized by a co-reduction method. The catalyst samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The results show that ternary alloy catalysts are always better than binary alloy catalysts. In particular, PtRuNi is the best catalyst for methanol oxidation reaction.

Downloads

Download data is not yet available.

References

T. S. Almeida, C. Garbim, R. G. Silva, A. R. De Andrade, J. Electroanal. Chem 796 (2017) 49-56. https://doi.org/10.1016/j.jelechem.2017.04.039.

C. Zhang, X. Shen, Y. Pan, Z. Peng, Front. Energy 11(3) (2017) 268-285.

https://doi.org/10.1007/s11708-017-0466-6.

N. Seselj, C. Engelbrekt, J. Zhang, Sci. Bull. 60(9) (2015) 864-876.

https://doi.org/10.1007/s11434-015-0745-8.

D. Li, C. Wang, D. S. Strmcnik, D. V. Tripkovic, X. Sun, Y. Kang, M. Chi, J. D. Snyder, D. van der Vliet, Y. Tsai, V. R. Stamenkovic, S. Sun, N. M. Markovic, Energy Environ. Sci 7(12) (2014) 4061-4069. https://doi.org/10.1039/c4ee01564a.

G. Andreadis, P. Tsiakaras, Chem. Eng. Sci 61(22) (2006) 7497-7508. https://doi.org/10.1016/j.ces.2006.08.028.

Y. Hao, X. Wang, J. Shen, J. Yuan, A. J. Wang, L. Niu, S. Huang, Nanotechnology 27(14) (2016) 145602. https://doi.org/10.1088/0957-4484/27/14/145602.

D. J. Suh, C. Kwak, J. H. Kim, S. M. Kwon, T. J. Park, J. Power Sources 142(1-2) (2005) 70-74. https://doi.org/10.1016/j.jpowsour.2004.09.012.

T. Y. Chen, T. J. M. Luo, Y. W. Yang, Y. C. Wei, K. W. Wang, T. L. Lin, T. C. Wen, C. H. Lee, J. Phys. Chem. C 116(12) (2012) 16969–16978. https://doi.org/10.1021/jp3017419.

J. H. Jang, E. Lee, J. Park, G. Kim, S. Hong, Y. U. Kwon, Sci. Rep 3 (2013) 2782. https://doi.org/10.1038/srep02872.

H. Feng, J. Ma, Z. Hu, J. Mater. Chem 20(9) (2010) 1702-1708.

https://doi.org/10.1039/b915667d.

M. Xu, Y. Zhao, H. Chen, W. Ni, M. Liu, S. Huo, L. Wu, X. Zang, Z. Yang, Y. M. Yan, ChemElectroChem

(8) (2019) 2316-2323. https://doi.org/10.1002/celc.201900332.

S. Kadkhodaei, A. van de Walle, Acta Mater. 147 (2018) 296-303. https://doi.org/10.1016/j.actamat.2018.01.025.

M. Filipa, S. Todorova, M. Shopska, M. Ciobanua, F. Papaa, S. Somacescua, C. Munteanua, V. Parvulescu, Catal. Today 306 (2018) 138-144. https://doi.org/10.1016/j.cattod.2017.02.013.

X. Jina, C. Zenga, W. Yana, M. Zhaoa, P. Bobbaa, H. Shi, P. S. Thapac, B. Subramaniama, R. V. Chaudhari, Appl. Catal. A–Gen 534 (2017), 46-57. https://doi.org/10.1016/j.apcata.2017.01.021.

D Kaewsai, M Hunsom, Nanomaterials 8(5), 299. https://doi.org/10.3390/nano8050299.

L. Lu, S. Chen, S. Thota, X. Wang, Y. Wang, S. Zou, J. Fan, J. Zhao, J. Phys. Chem. C 121(36) (2017) 19796–19806. https://doi.org/10.1021/acs.jpcc.7b05629.

N. K. Chaudhari, Y. Hong, B. Kim, S. I. Choi, K. Lee, J. Mater. Chem A 7(29) 2019 17183-17203. https://doi.org/10.1039/C9TA05309C.

X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu, G. Wu, Sustain. Energy Fuels 4(1) (2020) 15-30. https://doi.org/10.1039/C9SE00460B.

N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo, Y. E. Sung, Nano Today 9(4) (2014) 433-456. https://doi.org/10.1016/j.nantod.2014.06.006.

Y. Luo, N. Alonso-Vante, Electrochim. Acta 179 (2015) 108-118. https://doi.org/10.1016/j.electacta.2015.04.098.

W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, J. Phys. Chem. B 107(26) (2003) 6292-62992003. https://doi.org/10.1021/jp022505c.

Z. Q. Tian, S. P. Jiang, Y. M. Liang, P. K. Shen, J. Phys. Chem. B 110(11) (2006) 5343-5350. https://doi.org/10.1021/jp056401o.

L. Li, Y. Xing, J. Power Sources 178(1) (2008) 75-79. https://doi.org/10.1016/j.jpowsour.2007.12.002.

T. V. Mẫn, T. H. Q. Anh, L. M. L. Phụng, N. M. Tuấn, Tạp chí Hóa học, 49 (5AB) (2011) 380-387.

H. T. An, D. N. Phúc, N. T. P. Thoa, T. V. Mẫn, Tạp chí Khoa học và Công nghệ 51 (5A) (2013) 17-27.

Đ. C. Linh, P. T. San, G. H. Thái, N. N. Phong, T. V. Quân, Tạp chí Hóa học 2 (51) (2013) 39-44.

H. A. Huy, T. V. Man, H. T. Tai, H. T. T. Van, Tạp chí Khoa học và Công nghệ, 54 (4B) (2016) 472-482.

V. T. H. Phuong, T. V. Man, L. M. L. Phung, Vietnam Journal of Science and Technology, 56 (2A) (2018) 81-88.

Published

30-04-2022

Issue

Section

Full Articles

How to Cite

PtRu, PtRuFe and PtRuNi alloy electrocatalysts decorated on composite support C-MWCNTs for direct methanol fuel cells. (2022). Vietnam Journal of Catalysis and Adsorption, 11(1), 93-97. https://doi.org/10.51316/jca.2022.014

Share

Similar Articles

1-10 of 157

You may also start an advanced similarity search for this article.