Effect of metal precursors on polyol synthesis of palladium nanoparticles towards C-N bond formation
DOI:
https://doi.org/10.51316/jca.2020.075Keywords:
Palladium, nanoparticles, polyol synthesis, catalysis, C-N bond formationAbstract
In the present work, palladium nanoparticles were synthesized in glycerol following the bottom-up methodology, using Pd(II) and Pd(0) precursors. The as-prepared materials were characterized by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD), evidencing the formation of zero-valent palladium spheres in the nanosize ranges. The effects of metal precursors on the size of nanoparticles and their dispersion in medium reaction were illuminated, accompanying with the different catalytic activities towards C-N bond formation between acrylonitrile and morpholine. In particular, the recycling of catalytic phase was also desired thanks to immobilization of PdNPs in glycerol.
Downloads
References
J. Tsuji (Eds.), Palladium in Organic Synthesis, Springer: Berlin Heidelberg, 2005.
J. Tsuji (Eds.), Palladium Reagents and Catalysts: New Perspectives for the 21st Century, Wiley: West Sussex, UK, 2004.
Á. Molnár, Chem. Rev. 111 (2011) 2251-2320. https://doi.org/10.1021/cr100355b
T. S. Rodrigues, A. G. M. da Silva, P. H. C. Camargo, J. Mater. Chem. A 7 (2019) 5857-5874. https://doi.org/10.1039/C9TA00074G
Saldan, Y. Semenyuk, I. Marchuk, O. Reshetnyak, J. Mater. Sci. 50 (2015) 2337-2354. https://doi.org/10.1007/s10853-014-8802-2
H. Bönnemann, W. Brijoux, R. Brinkmann, T. Joußen, B. Korall, E. Dinjus, Angew. Chem., Int. Ed. Engl. 30 (1991) 1312-1314. https://doi.org/10.1002/anie.199113121
M. T. Reetz, G. Lohmer, Chem. Commun. (1996) 1921-1922. https://doi.org/10.1039/CC9960001921
J. Dupont, J. D. Scholten, Chem. Soc. Rev. 39 (2010) 1780-1804. https://doi.org/10.1039/B822551F
D. Astruc (Eds.), Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2008.
H. Dong, Y.-C. Chen, C. Feldmann, Green Chem. 17 (2015) 4107-4132. https://doi.org/10.1039/C5GC00943J
N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 37 (2008) 123-150. https://doi.org/10.1039/B006677J
F. Fiévet, S. Ammar-Merah, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J.-Y. Piquemal, L. Sicard, G. Viau, Chem. Soc. Rev. 47 (2018) 5187-5233. https://doi.org/10.1039/C7CS00777A
T. B. Dang, A. T. K. Tran, J. Sci. Tech. 17 (2019) 21-23. http://doi.org/10.31130/JST-UD2019-093E
K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, S. E. Skrabalak, Dalton Trans. 44 (2015) 17883-17905. https://doi.org/10.1039/C5DT02964C
T. Kusukawa, G. Niwa, T. Sasaki, R. Oosawa, W. Himeno, M. Kato, Bull. Chem. Soc. Jpn. 86 (2013) 351-353. https://doi.org/10.1246/bcsj.20120300
B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J. S. Kim, J. Colloid Interface Sci. 311 (2007) 417-424. https://doi.org/10.1016/j.jcis.2007.03.039
L. S. Ott, R. G. Finke, Coord. Chem. Rev. 251 (2007) 1075-1100. https://doi.org/10.1016/j.ccr.2006.08.016