Highly active hydrogenation of 4-methoxyacetophenone by the novel carbon-supported ternary nanocatalyst palladium-vanadium-cobalt
DOI:
https://doi.org/10.62239/jca.2024.007Keywords:
Nanocatalysts, palladium, cobalt, vanadium, hydrogenationAbstract
Multimetallic nanocatalysts have remarkably revealed activities in various catalytic applications. Herein, the ternary nanocatalysts based on palladium-vanadium-cobalt were successfully synthesized through the reduction of their salts with sodium borohydride including impregnating of activated carbon (AC) substrate with colloid solution of metallic nanoparticles (PdVCo/C). The immobile of trimetallic PdVCo on AC was evidenced by XRD, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-VIS spectroscopy. TEM imaging showed that the PdVCo particles size is about 7 nm. The trimetallic nanocatalysts were characterized in transfer hydrogenation of carbonyl substrates to alcohol product which was defined by GC (FID detector). The obtained result is that the conversion of the carbonyl substrates is over 73% in the case of PdVCo nano-catalyst in the presence of potassium hydroxide.
Downloads
References
E. Knoevenagel and B. Bergdolt, Chem. Ber., 36 (1903), 2857–2860. https://doi.org/10.1002/cber.19030360334
D. Wang and D. Astruc, Chem. Rev., 115, 13 (2015) 6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203
S. R. S. Ahmed, K. A. AlAsseel, A. M. Allgeier, J. S. J. Hargreaves, G. J. Kelly, K. Kirkwood, C. M. Lok, S. Schauermann and S. K. Sengupta, Hydrogenation Catalysts and Processes. 2018. https://doi.org/10.1515/9783110545210
R. Andrew, M. Takahiro, and O. Seiji, Dalton Transactions, 40, 40 (2011) 10304–10310. https://doi.org/10.1039/c1dt10544b
P. Albin, B. Jurka, and M. Igor, Appl. Catal. B, 52, 1 (2004) 49–60. https://doi.org/10.1016/j.apcatb.2004.02.019
Y. Feng et al., J. Am. Chem. Soc., 142, 2 (2020) 962–972. https://doi.org/10.1021/jacs.9b10816
A. Balouch, A. A. Umar, A. A. Shah, M. M. Salleh, and M. Oyama, ACS Appl. Mater. Interfaces, 5, 19 (2013) 9843–9849. https://doi.org/10.1021/am403087m
T. T. Co, Vietnam Journal of Catalysis and Adsorption, 4, 3 (2015), 60–64.
K. O. Sebakhy, G. Vitale, and P. Pereira-Almao, ACS Appl. Nano. Mater., 1, 11 (2018) 6269–6280, https://doi.org/10.1021/acsanm.8b01472
F. Alonso, P. Riente, J. A. Sirvent, and M. Yus, Appl. Catal. A Gen., 378, 1 (2010) 42–51. https://doi.org/10.1016/j.apcata. 2010.01.044
N. Neelakandeswari, G. Sangami, P. Emayavaramban, S. G. Babu, R. Karvembu, and N. Dharmaraj, J. Mol. Catal. A Chem., 356 (2012) 90–99. https://doi.org/10.1016/j.molcata.2011.12.029
T. T. Co, T. T. T. Pham, T. K. C. Pham, T. D. Diep, L. T. N. Huynh, and V. H. Le, J. Chem., 2020 (2020) 1-9. https://doi.org/10.1155/2020/6027613
G. A. Gebreslase, M. V. Martínez-Huerta, D. Sebastián, and M. J. Lázaro, Electrochim. Acta., 438 (2023) 1-11. https://doi.org/10.1016/j.electacta.2022.141538
J. TANG et al., Transactions of Nonferrous Metals Society of China (English Edition), 32, 5 (2022) 1598–1608. https://doi.org/10.1016/S1003-6326(22)65896-5
B. Jin, Y. Li, and L. Zhao, Int. J. Hydrogen Energy, 43, 45 (2018) 20712–20720. https://doi.org/10.1016/j.ijhydene.2018.09.155
H. Xue et al., ACS Appl. Mater. Interfaces, 8, 32 (2016) 20766–20771. https://doi.org/10.1021/acsami.6b05856
J. Lan, C. Li, T. Liu, and Q. Yuan, J. of Saudi Chem. Soc., 23, 1 (2019) 43–51. https://doi.org/10.1016/j.jscs.2018.04.002
T. T. Co, Science and Technology Development J., 24, 1 (2021) 1847–1853. https://doi.org/10.32508/stdj.v24i1.2507
T. T. Co, G. D. Dinh, H. L. Viet, and M. Tran Van, Vietnam J. of Catalysis and Adsorption, 9, 4 (2020) 17–21. https://doi.org/10.51316/jca.2020.064
A. Narani, H. P. R. Kannapu, K. Natte, and D. R. Burri, Molecular Catalysis, 497 (2020) 111200. https://doi.org/10.1016/j.mcat.2020.111200
X. Wang et al., J. Catal., 383 (2020) 254–263. https://doi.org/10.1016/j.jcat.2020.01.018
S. Y. Ang and D. A. Walsh, Appl. Catal. B, 98, 1–2 (2010) 49–56. https://doi.org/10.1016/j.apcatb.2010.04.025
B. S. Kumar, P. Puthiaraj, A. J. Amali, and K. Pitchumani, ACS Sustain. Chem. Eng., 6, 1 (2018) 491–500. https://doi.org/10.1021/acssuschemeng.7b02754.
H. Rojas and J. J. Martinez, Rev. Colomb. Quím., 38 (2009) 97-105.
K. Ramachandran, M. Vinothkannan, A. R. Kim, S. Ramakrishnan, and D. J. Yoo, Int. J. Hydrogen Energy, 44, 39 (2019) 21769–21780. https://doi.org/10.1016/j.ijhydene.2019.06.170
Q. Dong, Y. Zhao, X. Han, Y. Wang, M. Liu, and Y. Li, Int. J. Hydrogen Energy, 39, 27 (2014) 14669–14679. https://doi.org/10.1016/j.ijhydene.2014.06.139
F. Liao, T. Zw, B. Lo, S. Chi, and E. Ts, Recent Developments in Palladium-Based Bimetallic Catalysts’, 2014, https://doi.org/10.1002/cctc.v7.14/issuetoc
C. T. Thien, N. N. Minh, and V. L. D. Khang, Vietnam Journal of Chemistry, 59, 2 (2021) 192–197. https://doi.org/10.1002/vjch.202000142
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
University of Science Ho Chi Minh City
Grant numbers B2023-18-03