Synthesis and photocatalitic activities of NiFe2O4/nitrogen-doped graphene oxide composite
DOI:
https://doi.org/10.51316/jca.2020.029Keywords:
NiFe2O4/N-doped GO composites, Ferrite, Graphene oxideAbstract
In this work, the NiFe2O4/N-doped GO composites were successfully synthesized by the hydrothermal method. The structure, chemical compositions, the presence of functional groups, surface morphology, and magnetic properties of the obtained composites were investigated by X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The experimental results show that nickel ferrite (NiFe2O4) nanoparticles with the size of about 9-20 nm are dispersed evenly on the GO surface denatured by nitrogen. The saturation magnetization of composite NiFe2O4/GO-N is 39,32 emu/g. Photocatalytic activities of the NiFe2O4/N-doped GO composites have been evaluated through the photodegradation of the methyl blue (MB) under the irradiation of a tungsten filament lamp 75 W - 220 V, using a UV filter. MB photodegradation efficiency reaches 98% after 240 minutes of illumination. The NiFe2O4/N-doped GO photocatalysts are recovered under the utilization of an external magnetic field and can be reused. After 3 times of reuse, MB photodegradation efficiency reaches over 87%.
Downloads
References
Bahadur Shah Zafar Marg, Nano Materials. Edited by D. Chakavorty Indian National Science Academy, 47, (2001) 47-68.
O. M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert, and R. Goslich, “Photocatalysis in water environments using artificial and solar light,” Catalysis Today, vol. 58, no. 2-3, (2000) 199–230.https://doi.org/10.1016/S0920-5861(00)00252-2
Zhang Y., Tang Z.-R., Fu X., Xu Y.J., ACS Nano, 4, (2010) 7303. https://doi.org/10.1021/nn1024219
Hongwei M., Jianfeng S., Shi. M., Lu X., Zhiqiang L., Long Y., Li N., Mingxin Y., Appl. Catal. B: Environl. 121–122, (2012) 198–205.
Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K, Carbon, 50, (2012) 2337–2346. https://doi.org/10.1016/j.carbon.2012.01.057
Lixia W., Jiangchen L. et al. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M=Mn, Fe, Co, Ni) spinel ferrites, Chemical Engineering Journal 181 -182, (2012) 72-79. https://doi.org/10.1016/j.cej.2011.10.088
Suresh, A. Prakash, D. Bahadur, The role of reduced graphene oxide on the lectrochemical activity of MFe2O4 (M = Fe, Co, Ni and Zn) nanohybrids, Journal of Magnetism and Magnetic Materials (2017), http://dx.doi.org/10.1016/j.jmmm.2017. 08.034
Wu X, Wang W, Li F, Khaimanov S, Tsidaeva N, Lahoubi M, Appl. Surf. Sci, 389, (2016) 1003–1011. https://doi.org/10.1016/j.apsusc.2016.08.053
Y. Fu and X. Wang, Magnetically Separable ZnFe2O4–Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Ind. Eng. Chem. Res. , 50, (2011) 7210–7218. https://doi.org/10.1021/ie200162a
Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia and X. Wang, Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage, Ind. Eng. Chem. Res. , 51, (2012) 11700–11709. https://doi.org/10.1021/ie301347j
Y. Fang, R. Wang, G. Jiang, H. Jin, Y. Wang, X. Sun, Wang and T. Wang, CuO/ TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials, Bull. Mates. Sci, 35, (2012) 495-499. https://www.ias.ac.in/article/fulltext/boms/035/04/0495-0499
Y. Hou, X. Li, Q. Zhao and G. Chen, ZnFe2O4 multi-porous microbricks/ graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism, Appl. Catal, B, 142–143, (2012) 80 – 88. https://doi.org/10.1016/j.apcatb.2013.04.062
L. Sun, R. Shao, L.T. and Z. Chen, Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation, J. Alloys Compd, 564, (2013) 55–62. https://doi.org/10.1016/J.JALLCOM.2013.02.147
S. V Kumar, N. Huang, N. Yusoff and H. Lim, High performance magnetically separable graphene/ zinc oxide nanocomposite, Mater. Lett, 93, (2013) 411–414. https://doi.org/10.1016/j.matlet.2012.09.089
X. J. Zhang, G. S. Wang, W. Q. Cao, Y. Z. Wei, J. F. Liang, Lin Guo and and M. S. Cao, ACS Appl. Mater. Interfaces, 6, (2014) 7471-7478. https://doi.org/10.1021/am500862g
Lingamdinne LP, Choi Y-L, Kim I-S, Chang Y-Y, Koduru JR, Yang J-K, RSC Adv. , 6, (2016)73776–73789.
Penke YK, Anantharaman G, Ramkumar J, Kar KK. RSC Adv., 6, (2016) 55608–55617. https://doi.org/10.1039/c6ra06332b
Ai L, Zhang C, Chen Z. J. Hazard. Mater.; 192(3) (2011) 1515–1524. https://doi.org/10.1016/j.jhazmat.2011.06.068
Fu Y, Chen H, Sun X, Wang X. Appl. Catal. B, (2012) 111–112:280–287. https://doi.org/10.1016/j.apcatb.2011.10.009
W.S. Hummers Jr., R. E. Offerman. Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80, (1958) 1339-1339. http://dx.doi.org/10.1021/ja01539a017
V. S. Channu, R. Bobba, and R. Holze, “Graphite and graphene oxide electrodes for lithium ion batteries,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 436, (2013) 245–251,. https://doi.org/10.1016/j.colsurfa.2013.06.018
N. T. V. Hoan, N. T. A. Thu, H. Van Duc, N. D. Cuong, D. Q. Khieu, and V. Vo, Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its
Application for Toxic Metal Ion Removal, Journal of Chemistry, Vol. 2016. https://doi.org/10.1155/2016/2418172
Oscar F. Odio and Edilso Reguera, Nanostructured Spinel Ferrites: Synthesis, Functionalization, Nanomagnetism and Environmental Applications, http://dx.doi.org/10.5772/67513
Maryam Kiani, Jie Zhang, Jinlong Fan, Haowei Yang, Gang Wang, Jinwei Chen, and Ruilin Wang, Spinel nickel ferrite nanoparticles supported on nitrogen doped graphene as efficient electrocatalyst for oxygen reduction in fuel cells, Mater. Express, Vol. 7, No. 4, (2017) 261-272. https://doi.org/10.1166/mex.2017.1376
P. Ramesh Kumar, Enhanced properties of porous CoFe2O4–reduced graphene oxide composites with alginate binders for Li-ion battery applications, New J. Chem, 38, (2014) 3654-3361. https://doi.org/10.1039/c4nj00419a
Xiaojun Guo, Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4catalyst, Journal of the Taiwan Institute of Chemical Engineers, 1–11 (2015). https://doi.org/10.1016/j.jtice.2015.03.039
Dafeng Zhang, Xipeng Pu, Yanyan Gao, Changhua Su, Hong Li, Huaiyong Li, Wenxian Hang, One-step combustion synthesis of CoFe2O4–graphene hybrid materials for photodegradation of methylene blue, Materials Letters, 113, (2013) 179–181. https://doi.org/10.1016/j.matlet.2013.09.088
S.T. Xing, Z.C. Zhou, Z.C. Ma, Y.S. Wu. Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2, Appl. Catal. B: Environ., 107, (2011) 386–392.
https://doi.org/10.1016/j.apcatb.2011.08.002
Feng, J., J. Mao, XiaogangWen, M. Tu, "Ultrasonic assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles", Journal of Alloys and Compounds, 509, (2011) 9093–9097. https://doi.org/10.1016/J.JALLCOM.2011.06.053
Xinhua Xu et al., Nanoscale Zero-Valent Iron (nZVI) assembled on magnetic Fe3O4/ graphene for Chromium (VI) removal from aqueous solution, Journal of Colloid and Interface Science, 417, (2014) 51–59. https://doi.org/10.1016/j.jcis.2013.11.044
R. Liu, H.S. Wu, R Yeh, C.Y. Lee, Synthesis and bactericidal ability of TiO2 and Ag-TiO2 prepared by coprecipitation method, International Journal off photoenergy, (2012) 1-7. https://doi.org/10.1155/2012/640487
Y. Cong, F. Cheng, J. Zang, M. Anpo, Cacbon and Nitrogen-codoped TiO2 wwith high visible light photocatalyic activity, Chem. Letter, 35 (7), (2006) 800-801. https://doi.org/10.1246/cl.2006.800