Nickel nanoparticles supported on titanium oxides nanotubes as an efficient catalyst for hydrodechlorination of 3-chlorophenol
DOI:
https://doi.org/10.51316/jca.2021.078Keywords:
Hydrodechlorination, nanocatalyst, nickel nanoparticles, titanium oxides nanotubesAbstract
Titanium oxides nanotubes (TNTs) were prepared by hydrothermal method and used as nano-support for nickel nanoparticles. Indeed, nickel nanoparticles supported TNTs (Ni-TNTs) were in situ synthesized from nickel salt and TNTs by chemical reduction method using sodium borohydride (NaBH4) as reducing agent. The physio-chemical properties of Ni-TNTs nano-catalysts were fully characterized such as Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), and X-ray diffraction (XRD). The results showed that nickel salt was completely reduced to Ni0 metal with an average particle size of 12 nm. On the other hand, the catalytic activity is tested by the hydrodechlorination of chlorinated organic compounds. The hydrode-chlorinated conversion of 3-chlorophenol was obtained over 97%.
Downloads
References
L. Gui, R. W. Gillham. ACS Div. Environ. Chem. Prepr. 41 (1), (2001) 1132–1137.
http://doi.org/10.1021/bk-2002-0837.ch014
G. Chehade, N. Alrawahi, B. Yuzer, I. Dincer. Sci. Total Environ. 712 (2020) 136358.
https://doi.org/10.1016/ j.scitotenv.2019.136358
T. Doan, A. Dang, D. Nguyen, T. H. Vuong, M. T. Le, H. P. Thanh. J. Chem. 5552187 (2021) 1-15. https://doi.org /10.1155/2021/5552187
R. A. Khaydarov, R. R. Khaydarov, O. Gapurova. J. Colloid Interface Sci. 406 (2013) 105–110. http://dx.doi. org/10.1016/j.jcis.2013.05.067
X. Ma, Y. Liu, X. Li, J. Xu, G. Gu, C. Xia. Appl. Catal. B Environ. 165 (2015) 351–359.
http://dx.doi.org/10.1016/ j.apcatb.2014.10.035
S. Du, X. Wang, J. Shao, H. Yang, G. Xu, H. Chen. Energy 74 (C), (2014) 295–300.
http://dx.doi.org/10.1016/ j.energy.2014.01.012
T. T. Co, D. K. Le, V. D. Le, T. N. T. Doan. Sci. Technol Dev. J. 23 (4), (2020) 764–770.
http://doi.org/10.32508/ stdj.v23i4.2451
K. Wiltschka, L. Neumann, M. Werheid, M. Bunge, R. A. Düring, K. Mackenzie, et al. Appl. Catal. B Environ. 275 (2020) 19100–19109. https://doi.org/10.1016/j.apcatb. 2020.119100
L. Xu, E. E. Stangland, A. L. Dumesic, M. Mavrikakis. ACS Catal. 11 (13), (2021) 7890–7895.
http://doi.org/10.1021/ acscatal.1c00940
Y. Xu, J. Ma, Y. Xu, H. Li, P. Li, et al. Appl. Cata.l A Gen 413-414 (2012) 350–357. http://doi.org/10.1016/j.apcata. 2011.11.026
M. Balda, F. D. Kopinke. Chem. Eng. J. 338 (2020) 124185. https://doi.org/10.1016/j.cej.2020.124185
K. Nakajima, K. Nansai, K. Matsubae, M. Tomita, W. Takayanagi, T. Nagasaka. Sci. Total Environ. 586 (2017) 730–737. http://dx.doi.org/10.1016/j.scitotenv.2017.02. 049
T. T. Co, N. M. Nguyen, L. D. K. Vo. Vietnam J. Chem. 59 (2), (2021) 192–197. http://doi.org/10.1002/vjch.202000 142
I. Khan, K. Saeed, I. Khan. Arabian Journal of Chemistry. 12 (2019) 908–931. http://doi.org/10.1016/j.arabjc. 2017.05.011
N. Neelakandeswari, G. Sangami, P. Emayavaramban, S. B. Ganesh, R. Karvembu, N. Dharmaraj. J. Mol. Catal. A Chem. 356 (2012) 90–99. http://doi.org/10.1016/j.molcata.2011.12.029
M. Dusselier, M. E. Davis. Chem. Rev. 118 (11), (2018) 5265–5329.
https://doi.org/10.1021/acs.chemrev. 7b00738
H. Liang, Z. Wang, L. Liao, L. Chen, Z. Li, J. Feng. Optik. 136 (2017) 44–51.
http://dx.doi.org/10.1016/j.ijleo.2017. 02.018
C. Wang, Z. H. Shi, L. Peng, W. M. He, L. B. Liang, K. Z. Li.. Surfaces and Interfaces. 7 (2017) 116–124. http://doi.org/10.1016/j.surfin.2017.03.007
T. N. T. Le, B. T. Tran, T. H. T. Vu. Tạp chí khoa học ĐHSP Thành phố Hồ Chí Minh. 2 (67), (2015) 1–2. http://journal.hcmue.edu.vn/index.php/hcmuejos/article/download/451/443
V. S. Nguyen, T. D. T. Duong, T. P. Nguyen, T. S.N. Le. Sci. Tech. Dev. J. 18 (2015) 228–236.
http://stdj.scienceandtechnology.com.vn/index.php/stdj/article/download/1188/1556/
T. T. Co, T. K. A. Tran, T. H. L. Doan, T. D. Diep. J. Chem. 8580754 (2021) 1–9.
http://doi.org/10.1155/2021/8580754
L. G. Vernasqui, A. F. Sardinha, S. S. Oishi, N. G. Ferreira. J. Mater. Res. Technol. 12 (2021) 597–612. https://doi. org/10.1016/j.jmrt.2021.02.099
M. Tak, H. Tomar, R. G. Mote. Procedia CIRP. 95 (2020) 803–8. https://doi.org/10.1016/j.procir.2020.01.140
D. Li, S. Komarneni. J. Am. Ceram. Soc. 89 (5), (2006) 1510–1517. http://doi.org/10.1111/j.1551-2916.2006.00925.x
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
University of Science Ho Chi Minh City
Grant numbers HH 2021-01