Highly efficient transfer hydrogenation of 4-Methoxybenzaldehyde over supported silver nanoparticles
DOI:
https://doi.org/10.51316/jca.2020.064Keywords:
Silver nanoparticles, catalysts, hydrogenation, organic synthesisAbstract
Silver nanoparticles were simply synthesized via the reduction of silver salt using ascorbic acid as reducing agents. These silver nanoparticles were then embedded on the supports X (X = Bent, C, ZnO, Zeolit, and Al2O3) in high yield. The optical property of these catalysts was characterized by UV-Vis spectroscopy, the structure of Ag-X was studied by Powder X Ray Diffraction (PXRD), the distribution of Ag particles in X was studied by Transmission Electron Microscopy (TEM), the specific surface area of catalysts was evaluated by N2 adsorption isotherms analysis at 77K. All results consisted to the loading method, indeed, TEM image indicated that the silver nanoparticles size is in range of 10¸15 nm and fully loaded into X. The efficiency of these catalysts was performed on the transfer hydrogenation of 4-methoxybenzaldehyde in the presence of potassium hydroxide as base at atmosphere pressure. The results showed that Ag-X exhibited high activities of up to 89.8% conversion within 60 min at 60 °C in the case of Ag-C catalyst.
Downloads
References
E. Knoevenagel, B. Bergdolt, Chem. Ber. 36 (1903) 2857–60. https://doi.org/10.1002/cber.19030360334
D. Wang, D. Astruc, Chem. Rev. 115 (2015) 6621–86. https://doi.org/10.1021/acs.chemrev.5b00203
K. A. A. AlAsseel, A. M. Allgeier, J. S. J. Hargreaves, G. J. Kelly, K. Kirkwood, C. M. Lok, S. Schauermann, S. K. Sengupta, Jackson SD, editor. 2018. https://doi.org/10.1515/9783110545210
R. Andrew, M. Takahiro, O. Seiji, Dalton Transactions. 40 (2011) 10304–10310. https://doi.org/10.1039/c1dt10544b
P. Albin, B. Jurka, M. Igor, Appl. Catal. B Environ. 52, 1 (2004) 49–60. https://doi.org/10.1016/j.apcatb.2004.02.019
Y. Feng, W. Xu, B. Huang, Q. Shao, L. Xu, S. Yang, J. Am. Chem. Soc. 142, 2 (2020) 962–72. https://10.0.3.253/jacs.9b10816
A. Balouch, A. A. Umar, A. A. Shah, M. M. Salleh, M. Oyama, ACS Appl. Mater. Interfaces 5, 19 (2013) 9843–9. https://doi.org/10.1021/am403087m
T. T. Co, Vietnam J. Catal. Adsorpt. 4, 3 (2015) 60–64. https://chemeng.hust.edu.vn/jca/volumes-issues
K. O. Sebakhy, G. Vitale, P. P. Almao, ACS Appl. Nano Mater. 1, 11 (2018) 6269–80. https://doi.org/10.1021/acsanm.8b01472
F. Alonso, P. Riente, J. A. Sirvent, M. Yus, Appl. Catal. A Gen. 378, 1 (2010) 42–51. https://dx.doi.org/10.1016/j.apcata.2010.01.044
N. Neelakandeswari, G. Sangami, P. Emayavaramban, G. S. Babu, R. Karvembu, N. Dharmaraj, J. Mol. Catal. A Chem. 356 (2012) 90–9. https://doi.org/10.1016/j.molcata.2011.12.029
J. P. Deng, W. C. Shih, C. Y. Mou, J. Phys. Chem. C 111, 27 (2007) 9723–8. https://doi.org/10.1021/jp0690042
X. Liu, C. Wang, S. Cheng, N. Shang, S. Gao, C. Feng, Catal. Commun. 108 (2018) 103–7. https://dx.doi.org/10.1016/j.catcom.2018.02.001
K. H. Lim, A. B. Mohammad, I. V. Yudanov, K. M. Neyman, M. Bron, P. Claus, J. Phys. Chem. C 113, 30 (2009) 13231–40. https://doi.org/10.1021/jp902078c
O. Iwao. Catalytic Asymmetric Synthesis. Wiley. Jonh Wiley & Son, (Eds) (2010). https://doi.org/10.1002/9780470584248
M. J. Landry, A. Gellé, B. Y. Meng, C. J. Barrett, A. Moores, ACS Catal. 7, 9 (2017) 6128–33. https://doi.org/10.1021/acscatal.7b02128
I. Khan, K. Saeed, I. Khan, Arabian J. Chem. 12 (2019) 908–31. https://doi.org/10.1016/j.arabjc.2017.05.011
P. Jiang, X. Li, W. Gao, X. Wang, Y. Tang, K. Lan, Catal. Commun. 111 (2018) 6–9. https://doi.org/10.1016/j.catcom.2018.03.017
T. K. L. Nguyen, T. D. Nguyen, N. D. Nguyen, V. C. Cao, D. D. Bui, Q. H. Nguyen, Vietnam J. Chem. 58, 3 (2020) 398–403. https://doi.org/10.1002/vjch.202000009
A. Pyatenko, M. Yamaguchi, M. Suzuki, J. Phys. Chem. B 109, 46 (2005) 21608–11. https://doi.org/10.1021/jp055246a
A. M. Hengne, A. V. Malawadkar, N. S. Biradar, C. V. Rode, RSC Adv. 4, 19 (2014) 9730–6. https://doi.org/10.1039/c3ra46495d