Large-scale synthesis of reduced-graphene oxide and its applications in supercapacitors
DOI:
https://doi.org/10.62239/jca.2024.060Keywords:
Reduced Graphene oxide, electrochemical exfoliation, supercapacitors, EDLCsAbstract
Graphene-based electrode materials exhibit a high specific capacitance and long charge-discharge cycling life, but the material cost remains high because of the complexity of the graphene manufacturing process. This study employed an electrochemical exfoliation method to prepare graphene in a simple and ecologically friendly procedure. According to research findings, the disordered multi-layer structure of graphene exhibited great purity, porosity, and graphitization. The graphene electrode material showed high electrochemical properties in a two-electrode supercapacitor system, with a specific capacitance of 168.2 F g-1 at a current density of 0.1 A g-1 and a specific capacitance retention of 94.5 % after 1000 cycles. Research shows enormous potential of electrochemical approaches for producing large-scale graphene materials for energy storage application.
Downloads
References
A.K.J.s. Geim, 324 (2009) 1530. https://doi.org/10.1126/science.1158877
M.J. Allen, V.C. Tung, R.B. Kaner, Chemical reviews 110 (2010) 132. https://doi.org/10.1021/cr900070d
R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nature materials 14 (2015) 271. https://doi.org/10.1038/nmat4170
C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano letters 10 (2010) 4863. https://doi.org/10.1021/nl102661q
M.F. El-Kady, Y. Shao, R.B. Kaner, Nature Reviews Materials 1 (2016) 1. https://doi.org/10.1038/natrevmats.2016.33
S. Alex Pandian, M. Sivakumar, Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.01.415
Q. Li, M. Xu, C. Jiang, S. Song, T. Li, M. Sun, W. Chen, H. Peng, Carbon 202 (2023) 561. https://doi.org/10.1016/j.carbon.2022.11.033
H.J. Salavagione, P.S. Shuttleworth, J.P. Fernández-Blázquez, G.J. Ellis, M.A. Gómez-Fatou, Carbon 167 (2020) 495. https://doi.org/10.1016/j.carbon.2020.05.108
R. Padma Priya, A. Baradeswaran, A. Bagubali, Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.02.279
K.S. Novoselov, V.I. Fal′ ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, nature 490 (2012) 192. https://doi.org/10.1038/nature11458
Y. Yan, F.Z. Nashath, S. Chen, S. Manickam, S.S. Lim, H. Zhao, E. Lester, T. Wu, C.H. Pang, Nanotechnology Reviews 9 (2020) 1284. https://doi.org/10.1515/ntrev-2020-0100
K. Mullen, ACS nano 8 (2014) 6531. https://doi.org/10.1021/nn503283d
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Advanced materials 22 (2010) 3906. https://doi.org/10.1002/adma.201001068
L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Nature nanotechnology 5 (2010) 321. https://doi.org/10.1038/NNANO.2010.54
F. Liu, C. Wang, X. Sui, M.A. Riaz, M. Xu, L. Wei, Y. Chen, Carbon Energy 1 (2019) 173. https://doi.org/10.1002/cey2.14
D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, International Scholarly Research Notices 2012 (2012). https://doi.org/10.5402/2012/501686
Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, Nature nanotechnology 3 (2008) 563. https://doi.org/10.1038/nnano.2008.215
S. Pei, H.-M. Cheng, Carbon 50 (2012) 3210. https://doi.org/10.1016/j.carbon.2011.11.010
J.R. Miller, R. Outlaw, B. Holloway, Science 329 (2010) 1637. https://doi.org/10.1126/science.1194372
D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, T. Ryhänen, Chemical communications 48 (2012) 1239. https://doi.org/10.1039/c2cc16859f
K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, Nature materials 13 (2014) 624. https://doi.org/10.1038/nmat3944
D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nature nanotechnology 3 (2008) 101. https://doi.org/10.1038/nnano.2007.451
S. Park, R.S. Ruoff, Nature nanotechnology 4 (2009) 217. DOI: 10.1038/nnano.2009.58
C. Low, F. Walsh, M. Chakrabarti, M. Hashim, M. Hussain, Carbon 54 (2013)1. https://doi.org/10.1016/j.carbon.2012.11.030
S. Yang, M.R. Lohe, K. Müllen, X. Feng, Advanced Materials 28 (2016) 6213. https://doi.org/10.1002/adma.201505326
J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, Physical Chemistry Chemical Physics 13 (2011) 15384. https://doi.org/10.1039/C1CP21915D
B. Zhao, P. Liu, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, W. Xu, Journal of power sources 198 (2012) 423. https://doi.org/10.1016/j.jpowsour.2011.09.074
L.L. Zhang, X. Zhao, Chemical Society Reviews 38 (2009) 2520. https://doi.org/10.1039/B813846J
W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nature nanotechnology 4 (2009) 562. https://doi.org/10.1038/nnano.2009.191
A.Y. Lee, K. Yang, N.D. Anh, C. Park, S.M. Lee, T.G. Lee, M.S. Jeong, Applied Surface Science 536 (2021) 147990. https://doi.org/10.1016/j.apsusc.2020.147990.
Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48 (2010) 2118. https://doi.org/10.1126/science.1200770
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.