Cu2(BDC)2DABCO as an efficient heterogeneous catalyst for the oxidative C-N coupling reaction between amides and unactivated alkanes
DOI:
https://doi.org/10.51316/jca.2020.011Keywords:
Metal-organic frameworks, catalysis, oxidative C-N couplingAbstract
A copper-organic framework Cu2(BDC)2DABCO was synthesized, and used as a recyclable heterogeneous catalyst for C-N coupling reaction between benzamide and cyclohexane. 94% yield of N-cyclohexylbenzamide was achieved under the optimized condition. The copper-organic framework catalyst was truly heterogeneous and could be used at least 4 cycles without degradation of catalytic performance. To the best of our knowledge, the amidation of unactivated alkanes by benzamides via direct oxidative C-N coupling was previously performed under heterogeneous catalysis conditions but very rare.
Downloads
References
C.L. Allen, J.M.J. Williams, Chem. Soc. Rev. 40 (2011) 3405-3415. https://doi.org/10.1039/C0CS00196A
S. Roy, S. Roy, G.W. Gribble, Tetrahedron 68 (2012) 9867-9923. https://doi.org/10.1016/j.tet.2012.08.065
R.M. Al-Zoubi, O. Marion, D.G. Hall, Angew. Chem. Int. Ed. 47 (2008) 2876-2879. https://doi.org/10.1002/anie.200705468
P. Acosta-Guzmán, A. Mateus-Gómez, D. Gamba-Sánchez, Molecules 23 (2018) 2382. https://doi.org/10.3390/molecules23092382
C.-J. Li, Acc. Chem. Res. 42 (2009) 335-344. https://doi.org/10.1021/ar800164n
J. Yamaguchi, A.D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 51 (2012) 8960-9009. https://doi.org/10.1002/anie.201201666
B.L. Tran, B. Li, M. Driess, J.F. Hartwig, J. Am. Chem. Soc. 136 (2014) 2555-2563. https://doi.org/10.1021/ja411912p
F. Teng, S. Sun, Y. Jiang, J.-T. Yu, J. Cheng, Chem. Commun. 51 (2015) 5902-5905. https://doi.org/10.1039/C5CC00839E
H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. ACS Publications: 2012. https://doi.org/10.1021/cr300014x
W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Chem. Soc. Rev. 46 (2017) 3242-3285. https://doi.org/10.1039/C6CS00930A
Z. Bao, G. Chang, H. Xing, R. Krishna, Q. Ren, B. Chen, Energ. Environ. Sci. 9 (2016) 3612-3641. https://doi.org/10.1039/C6EE01886F
I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, Chem. Soc. Rev. 46 (2017) 3185-3241. https://doi.org/10.1039/C7CS00122C
P.A. Julien, C. Mottillo, T. Friščić, Green Chem. 19 (2017) 2729-2747. https://doi.org/10.1039/C7GC01078H
S. Kuyuldar, D.T. Genna, C. Burda, J. Mater. Chem. A 7 (2019) 21545-21576. https://doi.org/10.1039/C9TA09896H
A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 47 (2018) 8134-8172. https://doi.org/10.1039/C8CS00256H
Q. Shi, S. Fu, C. Zhu, J. Song, D. Du, Y. Lin, Mater. Horiz. 6 (2019) 684-702. https://doi.org/10.1039/C8MH01397G
L. Lu, B. Wu, W. Shi, P. Cheng, Inorg. Chem. Front. (2019). https://doi.org/10.1039/C9QI00964G
Q. Yang, Q. Xu, H.-L. Jiang, Chem. Soc. Rev. 46 (2017) 4774-4808. https://doi.org/10.1039/C6CS00724D
T.T. Hoang, H.T. Nguyen, T.T. Le, D.T. Le, T. Truong, N.T. Phan, Tetrahedron 72 (2016) 8241-8251. https://doi.org/10.1016/j.tet.2016.10.059
N.T. Phan, T.T. Nguyen, V.T. Nguyen, K.D. Nguyen, ChemCatChem 5 (2013) 2374-2381. https://doi.org/10.1002/cctc.201300032
G.H. Dang, T.T. Dang, D.T. Le, T. Truong, N.T.S. Phan, J. Catal. 319 (2014) 258-264. https://doi.org/10.1016/j.jcat.2014.09.010
Radicals. In Mechanisms in Organic Reactions, Jackson, R. A., Ed. The Royal Society of Chemistry: 2004; Vol. 23, pp 118-149. https://doi.org/10.1039/9781847551337-00118
J.J. Kochi, J. Am. Chem. Soc. 85 (1963) 1958-1968. https://doi.org/10.1021/ja00896a014
H. Lee, H.-J. Lee, D.L. Sedlak, C. Lee, Chemosphere 92 (2013) 652-658. https://doi.org/10.1016/j.chemosphere.2013.01.073
H. Tanida, T. Tsuji, J. Org. Chem. 29 (1964) 849-852. https://doi.org/10.1021/jo01027a019