Synthesis and Application of Zn‑BTC/GO Nanocomposites as Highly Efficient Photocatalysts in the Dye Degradation
DOI:
https://doi.org/10.51316/jca.2022.010Keywords:
Zn-BTC, Zn-BTC/GO, MOFs, photocatalytic, Reactive Red 195Abstract
Nanocomposite Zn-BTC/GO (BTC: benzene-1,3,5-tricarboxylic, GO: graphene oxide) was successfully synthesized by hydrothermal treatment with a microwave method. Samples were characterized by XRD, FTIR, EDS-mapping, BET, SEM, UV-vis DRS and XPS. SEM-image result showed nano Zn-BTC/GO particles size of 50-80 nm. Nanocomposite Zn-BTC/GO showed the a high surface area (1303 m2/g) and pore volume (1.08 cm3/g). The Zn-BTC/GO nanocomposite were tested for the photocatalytic degradation of reactive dye (Reactive Red 195) in an aqueous solution. The Zn-BTC/GO composites exhibited high photocatalytic activity. Thus, at the pH of 6.5 and the high initial concentration of 30 mg RR-195/L, removal efficiency reached the value of 96.16% after 60 min reaction. Moreover, nano Zn-BTC also showed high RR-195 removal efficiency after 3 catalytic regeneration. This contributes to sustainable development and green chemistry.
Downloads
References
Liyu Chen, Hao-Fan Wang, Caixia Li and Qiang Xu Chem. Sci, 11, (2020) 5369. https://doi.org/10.1039/D0SC01432J
Dan W Inorg. Chem. Front., 2018,5, (2018) 1760-1779. https://doi.org/10.1039/C8QI00149A
Lan X, Huang N, Wang J, Wang T. Chem Commun 54: (2018) 584–587. https://doi.org/10.1039/C7CC08244D
Diring S, Furukawa S, Takashima Y et al Chem Mater 22: (2010) 4531–4538. https://doi.org/10.1021/cm101778g
Majewski MB, Noh H, Islamoglu T, Farha OK J Mater Chem A 6: (2018) 7338–7350. https://doi.org/10.1039/C8TA02132E
Anne Pichon, Ana Lazuen-Garay and Stuart L. James CrystEngComm, 8, 211–214 (2006) 211. https://doi.org/10.1039/B513750K
Heng Zhang, Jing Zhong, Guoxiang Zhou, Junliang Wu, Zhenyu Yang and Xianming Shi. Journal of Nanomaterials Volume 2016 |Article ID 9648386 |(2016).
https://doi.org/10.1155/2016/9648386
Y. Wu, H. Luo, H. Wang RSC Adv. 4 (2014) 40435–40438.
https://doi.org/10.1039/c4ra07566h
Hoa T. Vu, Manh B. Nguyen, Tan M. Vu, Giang H. Le, Trang T. T. Pham, Trinh Duy Nguyen & Tuan A. Vu Topics in Catalysis (2020). https://doi.org/10.1007/s11244-020-01289-w
L. Huang, B. Liu RSC Adv. 6, (2016) 17873–17879. https://doi.org/10.1039/c5ra25689e.
E. Akbarzadeh, H.Z. Soheili, M. Hosseinifard, M.R. Gholami, Mater. Res. Bull. 121, (2020) 110621. https://doi.org/10.1016/j.materresbull.2019.110621
E. Akbarzadeh, H.Z. Soheili, M.R. Gholami Mater. Chem. Phys. 237, (2019) 121846. https://doi.org/10.1016/j.matchemphys.2019.121846
T.A. Vu, G.H. Le, H.T. Vu, K.T. Nguyen, T.T.T. Quan, Q.K. Nguyen, H.T.K. Tran, P.T. Dang, L.D. Vu, G.D. Lee Mater. Res. Express. (2017) 4 https://doi.org/10.1088/2053-1591/aa6079.
G.D. Degaga, R. Pandey, C. Gupta, L. Bharadwaj, RSC Adv.9, (2019) 14260–14267. https://doi.org/10.1039/c9ra00687g
M.B. Nguyen, V.T. Hong Nhung, V.T. Thu, D.T. Ngoc Nga, T.N. Pham Truong, H.T. Giang, P.T. Hai Yen, P.H. Phong, T.A. Vu, V.T. Thu Ha, (RSC Adv. 10, 2020) 42212–42220. https://doi.org/10.1039/d0ra06700h
X. Wang, X. Ma, H. Wang, P. Huang, X. Du, X. Lu, Microchim. Acta. 184, (2017) 3681–3687. https://doi.org/10.1007/s00604-017-2382-1
W.W. Lestari, M. Arvinawati, R. Martien, T. Kusumaningsih, Mater. Chem. Phys. 204, (2018) 141–146. https://doi.org/10.1016/j.matchemphys.2017.10.034
M.D. Donohue, G.L. Aranovich, 76–77, (1998) 137–152. https://doi.org/10.1016/S0001-8686(98)00044-X
W. Xu, G. Li, W. Li, H. Zhang, RSC Adv. 6, (2016) 37530–37534. https://doi.org/10.1039/c6ra04465d
X.N. Pham, M.B. Nguyen, H.S. Ngo, H. V. Doan J. Ind. Eng. Chem. 90, (2020) 358–370. https://doi.org/10.1016/j.jiec.2020.07.037
Nasrin Aghajari & Zahra Ghasemi & Habibollah Younesi1 & Nader Bahramifar, J Environ Health Sci Eng Apr 3;17(1) (2019) 219-232. https://doi.org/10.1007/s40201-019-00342-5
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers VHH.2021.02