A theoretical study on the CO2 methanation over Ni5/AC catalysts by means of density functional theory. Part II: Reaction pathways
DOI:
https://doi.org/10.51316/jca.2020.012Keywords:
CO2, mechanism, methanation, nickel, ACAbstract
The methanation of carbon dioxide over Ni5 supported on activated carbon (Ni5/AC) was studied by using density functional theory and climbing image – nudged elastic band methods. A reaction diagram for the formation of methane via CO or HCOO species, which consists of 14 reaction steps was proposed. The reaction energy and activation energy for the overall steps involved in the reaction process were calculated and analyzed. Following the proposed mechanism possible carbon byproducts of the CO2 methanation reaction are CO and HCHO. Formation of these products can occur at high temperatures, but it is more thermodynamically difficult than formation of CH4. The formation of CH4 is more preferably occur via the CO pathway than the HCOO pathway.
Downloads
References
Younas, M., Loong Kong, L., Bashir, M. J., Nadeem, H., Shehzad, A., & Sethupathi, S. Energy & Fuels, 30(11) (2016), p.8815-8831. https://doi.org/10.1021/acs.energyfuels.6b01723
Su, X., Xu, J., Liang, B., Duan, H., Hou, B., & Huang, Y. Journal of Energy Chemistry, 25(4) (2016), p.553-565. https://doi.org/10.1016/j.jechem.2016.03.009.
Frontera, P., Macario, A., Ferraro, M., & Antonucci, Appl. Catalysts, 7(2) (2017),p.59. https://doi.org/10.3390/catal7020059
Wang, W., Wang, S., Ma, X., & Gong, J. Chemical Society Reviews, 40(7) (2011),p. 3703-3727. https://doi.org/10.1039/C1CS15008A
Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. RSC advances, 8(14) (2018), p.7651-7669. https://doi.org/10.1039/C7RA13546G
Choe, S. J., Kang, H. J., Kim, S., Park, S., Park, D. H., & Huh, D. S. Bulletin-Korean Chemical Society, 26(11) (2005), p.1682. https://doi.org/10.5012/bkcs.2005.26.11.1682
Vesselli, E., Rizzi, M., De Rogatis, L., Ding, X., Baraldi, A., Comelli, G., ... & Baldereschi, A. The Journal of Physical Chemistry Letters, 1(1) (2010), p.402-406. https://doi.org/10.1021/jz900221c
Martínez, J., Hernández, E., Alfaro, S., López Medina, R., Valverde Aguilar, G., Albiter, E., & Valenzuela, M. A., Catalyts, 9(1) (2019),p. 24. https://doi.org/10.3390/catal9010024
Pan, Y. X., Liu, C. J., & Ge, Q. Journal of Catalysis, 272(2) (2010), p.227-234. https://doi.org/10.1016/j.jcat.2010.04.003
Vargas, D. P., Giraldo, L., & Moreno-Piraján, J. C. International Journal of Molecular Sciences, 13(7) (2012), p.8388-8397. https://doi.org/10.3390/ijms13078388
Samanta, A., Zhao, A., Shimizu, G. K., Sarkar, P., & Gupta, R. Industrial & Engineering Chemistry Research, 51(4) (2012), p.1438-1463. https://doi.org/10.1021/ie200686q
Wickramaratne, N. P., & Jaroniec, M. ACS applied materials & interfaces, 5(5) (2013), p.1849-1855. https://doi.org/10.1021/am400112m
Li, K., Tian, S., Jiang, J., Wang, J., Chen, X., & Yan, F. Journal of Materials Chemistry A, 4(14) (2016), p.5223-5234. https://doi.org/10.1039/C5TA09908K
Perdew, J. P., Burke, K., & Ernzerhof, M. Physical review letters, 77(18) (1996), p.3865. https://doi.org/10.1103/PhysRevLett.77.3865
Hamann, D. R., Schlüter, M., & Chiang, C. Physical Review Letters, 43(20) (1979), p.1494. https://doi.org/10.1103/PhysRevLett.43.1494
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. Journal of Physics: Condensed Matter, 14(11) (2002), p.2745. https://doi.org/10.1088/0953-8984/14/11/302
Henkelman, G., Uberuaga, B. P., & Jónsson, H. The Journal of chemical physics, 113(22) (2000), p.9901-9904. https://doi.org/10.1063/1.1329672
Mayer, I. Journal of computational chemistry, 28(1) (2007), p.204-221. https://doi.org/10.1002/jcc.20494.
Ren, J., Guo, H., Yang, J., Qin, Z., Lin, J., & Li, Z. (2015). Applied Surface Science, 351 (2015), p.504-516. https://doi.org/10.1016/j.apsusc.2015.05.173
Zhang, R., Liu, H., Wang, B., & Ling, L. Applied Catalysis B: Environmental, 126 (2012), p.108-120. https://doi.org/10.1016/j.apcatb.2012.07.009
Wang, Y., Su, Y., Zhu, M., & Kang, L. International Journal of Hydrogen Energy, 40(29) (2015), p.8864-8876. https://doi.org/10.1016/j.ijhydene.2015.05.002
Shi, X. R., Jiao, H., Hermann, K., & Wang, J. Journal of Molecular Catalysis A: Chemical, 312(1-2) (2009), p.7-17. https://doi.org/10.1016/j.molcata.2009.06.025
Koizumi, N., Bian, G., Murai, K., Ozaki, T., & Yamada, M. (2004). Journal of Molecular Catalysis A: Chemical, 207(2) (2004), p.173-182.https://doi.org/10.1016/S1381-1169(03)00497-7
Weatherbee, G. D., & Bartholomew, C. H. Journal of Catalysis, 77(2) (1982), p.460-472. https://doi.org/10.1016/0021-9517(82)90186-5
Liu, M., Yi, Y., Wang, L., Guo, H., & Bogaerts, Appl. .Catalysts, 9(3) (2019), p.275. https://doi.org/10.3390/catal9030275