A theoretical study on the CO2 methanation over Ni5/AC catalysts by means of density functional theory. Part II: Reaction pathways

Authors

  • Van Thi Minh Hue Hanoi National University of Education Author
  • Phung Thi Lan Hanoi National University of Education Author
  • Nguyen Thi Thu Ha Hanoi National University of Education Author
  • Le Minh Cam Hanoi National University of Education Author
  • Nguyen Ngoc Ha Hanoi National University of Education Author

DOI:

https://doi.org/10.51316/jca.2020.012

Keywords:

CO2, mechanism, methanation, nickel, AC

Abstract

The methanation of carbon dioxide over Ni5 supported on activated carbon (Ni5/AC) was studied by using density functional theory and climbing image – nudged elastic band methods. A reaction diagram for the formation of methane via CO or HCOO species, which consists of 14 reaction steps was proposed. The reaction energy and activation energy for the overall steps involved in the reaction process were calculated and analyzed. Following the proposed mechanism possible carbon byproducts of the CO2 methanation reaction are CO and HCHO. Formation of these products can occur at high temperatures, but it is more thermodynamically difficult than formation of CH4. The formation of CH4 is more preferably occur via the CO pathway than the HCOO pathway.

Downloads

Download data is not yet available.

References

Younas, M., Loong Kong, L., Bashir, M. J., Nadeem, H., Shehzad, A., & Sethupathi, S. Energy & Fuels, 30(11) (2016), p.8815-8831. https://doi.org/10.1021/acs.energyfuels.6b01723

Su, X., Xu, J., Liang, B., Duan, H., Hou, B., & Huang, Y. Journal of Energy Chemistry, 25(4) (2016), p.553-565. https://doi.org/10.1016/j.jechem.2016.03.009.

Frontera, P., Macario, A., Ferraro, M., & Antonucci, Appl. Catalysts, 7(2) (2017),p.59. https://doi.org/10.3390/catal7020059

Wang, W., Wang, S., Ma, X., & Gong, J. Chemical Society Reviews, 40(7) (2011),p. 3703-3727. https://doi.org/10.1039/C1CS15008A

Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. RSC advances, 8(14) (2018), p.7651-7669. https://doi.org/10.1039/C7RA13546G

Choe, S. J., Kang, H. J., Kim, S., Park, S., Park, D. H., & Huh, D. S. Bulletin-Korean Chemical Society, 26(11) (2005), p.1682. https://doi.org/10.5012/bkcs.2005.26.11.1682

Vesselli, E., Rizzi, M., De Rogatis, L., Ding, X., Baraldi, A., Comelli, G., ... & Baldereschi, A. The Journal of Physical Chemistry Letters, 1(1) (2010), p.402-406. https://doi.org/10.1021/jz900221c

Martínez, J., Hernández, E., Alfaro, S., López Medina, R., Valverde Aguilar, G., Albiter, E., & Valenzuela, M. A., Catalyts, 9(1) (2019),p. 24. https://doi.org/10.3390/catal9010024

Pan, Y. X., Liu, C. J., & Ge, Q. Journal of Catalysis, 272(2) (2010), p.227-234. https://doi.org/10.1016/j.jcat.2010.04.003

Vargas, D. P., Giraldo, L., & Moreno-Piraján, J. C. International Journal of Molecular Sciences, 13(7) (2012), p.8388-8397. https://doi.org/10.3390/ijms13078388

Samanta, A., Zhao, A., Shimizu, G. K., Sarkar, P., & Gupta, R. Industrial & Engineering Chemistry Research, 51(4) (2012), p.1438-1463. https://doi.org/10.1021/ie200686q

Wickramaratne, N. P., & Jaroniec, M. ACS applied materials & interfaces, 5(5) (2013), p.1849-1855. https://doi.org/10.1021/am400112m

Li, K., Tian, S., Jiang, J., Wang, J., Chen, X., & Yan, F. Journal of Materials Chemistry A, 4(14) (2016), p.5223-5234. https://doi.org/10.1039/C5TA09908K

Perdew, J. P., Burke, K., & Ernzerhof, M. Physical review letters, 77(18) (1996), p.3865. https://doi.org/10.1103/PhysRevLett.77.3865

Hamann, D. R., Schlüter, M., & Chiang, C. Physical Review Letters, 43(20) (1979), p.1494. https://doi.org/10.1103/PhysRevLett.43.1494

Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. Journal of Physics: Condensed Matter, 14(11) (2002), p.2745. https://doi.org/10.1088/0953-8984/14/11/302

Henkelman, G., Uberuaga, B. P., & Jónsson, H. The Journal of chemical physics, 113(22) (2000), p.9901-9904. https://doi.org/10.1063/1.1329672

Mayer, I. Journal of computational chemistry, 28(1) (2007), p.204-221. https://doi.org/10.1002/jcc.20494.

Ren, J., Guo, H., Yang, J., Qin, Z., Lin, J., & Li, Z. (2015). Applied Surface Science, 351 (2015), p.504-516. https://doi.org/10.1016/j.apsusc.2015.05.173

Zhang, R., Liu, H., Wang, B., & Ling, L. Applied Catalysis B: Environmental, 126 (2012), p.108-120. https://doi.org/10.1016/j.apcatb.2012.07.009

Wang, Y., Su, Y., Zhu, M., & Kang, L. International Journal of Hydrogen Energy, 40(29) (2015), p.8864-8876. https://doi.org/10.1016/j.ijhydene.2015.05.002

Shi, X. R., Jiao, H., Hermann, K., & Wang, J. Journal of Molecular Catalysis A: Chemical, 312(1-2) (2009), p.7-17. https://doi.org/10.1016/j.molcata.2009.06.025

Koizumi, N., Bian, G., Murai, K., Ozaki, T., & Yamada, M. (2004). Journal of Molecular Catalysis A: Chemical, 207(2) (2004), p.173-182.https://doi.org/10.1016/S1381-1169(03)00497-7

Weatherbee, G. D., & Bartholomew, C. H. Journal of Catalysis, 77(2) (1982), p.460-472. https://doi.org/10.1016/0021-9517(82)90186-5

Liu, M., Yi, Y., Wang, L., Guo, H., & Bogaerts, Appl. .Catalysts, 9(3) (2019), p.275. https://doi.org/10.3390/catal9030275

Published

30-01-2024

Issue

Section

Full Articles

How to Cite

A theoretical study on the CO2 methanation over Ni5/AC catalysts by means of density functional theory. Part II: Reaction pathways. (2024). Vietnam Journal of Catalysis and Adsorption, 9(1), 73-80. https://doi.org/10.51316/jca.2020.012

Share

Similar Articles

1-10 of 224

You may also start an advanced similarity search for this article.