Controllable synthesis of α-Fe2O3 nanorods toward photoelectrochemical applications

Authors

  • Ngo Thi Hien Thao Faculty of Natural Sciences, Quy Nhon University Author
  • Cao Thi Mong Gam Faculty of Natural Sciences, Quy Nhon University Author
  • Ha Van Thanh Faculty of Natural Sciences, Quy Nhon University Author
  • Nguyen Tan Lam Faculty of Natural Sciences, Quy Nhon University Author
  • Tran Nam Trung Faculty of Natural Sciences, Quy Nhon University Author

DOI:

https://doi.org/10.51316/jca.2021.102

Keywords:

Fe2O3 nanorods, controllable synthesis, hydrothermal, photoelectrode, photoelectrochemical

Abstract

Morphologically controllable synthesis of nanomaterials plays an important role in minimizing the drawbacks of materials as well as improving their properties. Herein, we report our recent efforts in controlling the synthesis of a-Fe2O3 nanorods via a hydrothermal approach. By varying the molar ratio of the precursors of iron(III) chloride and urea, different morphological structures of Fe2O3 nanorods were obtained. The results showed that upon using the molar ratio of the precursors of 2/3, the nanorods have an average diameter and length of ~80 nm and ~1  mm, respectively. In addition, these nanorods were vertically standing on the fluorine-doped tin oxide (FTO) substrate and the synthesized sample showed a highly porous structure. Moreover, based on these synthesized samples, photoelectrodes were fabricated to test their photoelectrochemical activity. Our results reveal that the ideal geometry of a-Fe2O3 nanorods can be used as promising candidates for applications in the fields of energy conversion and environment.

Downloads

Download data is not yet available.

References

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 110(11) (2010) 6446-6473. https://doi.org/10.1021/cr1002326

J. -S. Yoon, J. -W. Lee, Y.- M. Sung, J. Alloys Compd. 771 (2019) 869-876. https://doi.org/10.1016/j.jallcom.2018.09.021

K. -H. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M. Li, Y. Hu, W. Mai, H. Ji, S. Yang, Nat. Commun. 10(1) (2019) 3687.

https://doi.org/10.1038/s41467-019-11586-y

Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett. 11(5) (2011) 2119-2125. https://doi.org/10.1021/nl200708y

E. Asenath-Smith, L. A. Estroff, Cryst. Growth Des. 15(7) (2015) 3388-3398. https://doi.org/10.1021/acs.cgd.5b00475

T. Szatkowski, M. Wysokowski, G. Lota, D. Pęziak, V. V. Bazhenov, G. Nowaczyk, J. Walter, S. L. Molodtsov, H. Stöcker, C. Himcinschi, I. Petrenko, A. L. Stelling, S. Jurga, T. Jesionowski, H. Ehrlich, RSC Adv. 5(96) (2015) 79031-79040. https://doi.org/10.1039/C5RA09379A

J. Wang, W. B. White, J. H. Adair, J. Am. Ceram. Soc. 88(12) (2005) 3449-3454. https://doi.org/10.1111/j.1551-2916.2005.00643.x

H. Zhang, M. Bayne, S. Fernando, B. Legg, M. Zhu, R. L. Penn, J. F. Banfield, J. Phys. Chem. C 115(36) (2011) 17704-17710. https://doi.org/10.1021/jp205192a

S. Shen, S. A. Lindley, X. Chen, J. Z. Zhang, Energy Environ. Sci. 9(9) (2016) 2744-2775. https://doi.org/10.1039/C6EE01845A

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

Controllable synthesis of α-Fe2O3 nanorods toward photoelectrochemical applications. (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 112-116. https://doi.org/10.51316/jca.2021.102

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 209

You may also start an advanced similarity search for this article.