Controllable synthesis of α-Fe2O3 nanorods toward photoelectrochemical applications
DOI:
https://doi.org/10.51316/jca.2021.102Keywords:
Fe2O3 nanorods, controllable synthesis, hydrothermal, photoelectrode, photoelectrochemicalAbstract
Morphologically controllable synthesis of nanomaterials plays an important role in minimizing the drawbacks of materials as well as improving their properties. Herein, we report our recent efforts in controlling the synthesis of a-Fe2O3 nanorods via a hydrothermal approach. By varying the molar ratio of the precursors of iron(III) chloride and urea, different morphological structures of Fe2O3 nanorods were obtained. The results showed that upon using the molar ratio of the precursors of 2/3, the nanorods have an average diameter and length of ~80 nm and ~1 mm, respectively. In addition, these nanorods were vertically standing on the fluorine-doped tin oxide (FTO) substrate and the synthesized sample showed a highly porous structure. Moreover, based on these synthesized samples, photoelectrodes were fabricated to test their photoelectrochemical activity. Our results reveal that the ideal geometry of a-Fe2O3 nanorods can be used as promising candidates for applications in the fields of energy conversion and environment.
Downloads
References
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 110(11) (2010) 6446-6473. https://doi.org/10.1021/cr1002326
J. -S. Yoon, J. -W. Lee, Y.- M. Sung, J. Alloys Compd. 771 (2019) 869-876. https://doi.org/10.1016/j.jallcom.2018.09.021
K. -H. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M. Li, Y. Hu, W. Mai, H. Ji, S. Yang, Nat. Commun. 10(1) (2019) 3687.
https://doi.org/10.1038/s41467-019-11586-y
Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett. 11(5) (2011) 2119-2125. https://doi.org/10.1021/nl200708y
E. Asenath-Smith, L. A. Estroff, Cryst. Growth Des. 15(7) (2015) 3388-3398. https://doi.org/10.1021/acs.cgd.5b00475
T. Szatkowski, M. Wysokowski, G. Lota, D. Pęziak, V. V. Bazhenov, G. Nowaczyk, J. Walter, S. L. Molodtsov, H. Stöcker, C. Himcinschi, I. Petrenko, A. L. Stelling, S. Jurga, T. Jesionowski, H. Ehrlich, RSC Adv. 5(96) (2015) 79031-79040. https://doi.org/10.1039/C5RA09379A
J. Wang, W. B. White, J. H. Adair, J. Am. Ceram. Soc. 88(12) (2005) 3449-3454. https://doi.org/10.1111/j.1551-2916.2005.00643.x
H. Zhang, M. Bayne, S. Fernando, B. Legg, M. Zhu, R. L. Penn, J. F. Banfield, J. Phys. Chem. C 115(36) (2011) 17704-17710. https://doi.org/10.1021/jp205192a
S. Shen, S. A. Lindley, X. Chen, J. Z. Zhang, Energy Environ. Sci. 9(9) (2016) 2744-2775. https://doi.org/10.1039/C6EE01845A
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 103.02-2018.329