Preparation of IrRuO2 coating on bipolar plate for Proton exchage membrane water electrolyzer (PEMWE)
DOI:
https://doi.org/10.62239/jca.2024.082Keywords:
PEMWE, bipolar plates, IrO2-RuO2, TitanAbstract
Water electrolysis using proton exchange (PEMWE) is an effective method for hydrogen production without CO2 emission. The most important part in a PEMWE is the bipolar plates (BPPs). They are multifunctional components, ensuring the supply of water and removal of gases in each individual cell and facilitating charge carrier transport between them. The BPPs need to be maintained in the harsh PEMWE-operating environment with low costs and high electrical conductivity. Excellent corrosion resistance is found in Ti and the metal is therefore considered to be the best candidate for BPPs in PEMWE today. However, under the harsh conditions of PEMWE, the titanium material is degraded: brittle, craced and forms a passive oxide layer on the surface, and increasing the ohmic resistance. To overcome this, a thin oxide layer of mixed metallic oxides including IrO2 and RuO2 has been considered intensively for coating on the surface of the titanium. In this report, a thin film of IrxRu(1-x)O2 is applied over titanium by thermal decomposition. The XRD, SEM, cyclic voltammetry (CV), anodic polarization, chronoamperometry are employed to determine the physical characteristics and the electrochemical properties of material in 0.5 M H2SO4 solution. Based on testing results, the thin film of Ir5Ru5O2 coated bipolar plate having high durability and electric conductivity to serve as BPPs in PEMWE.
Downloads
References
M.G. Schultz, T. Diehl, G.P. Brasseur, and W. Zittel, Science, 302(5645) (2003) 624-627. https://doi.org/10.1126/science.1089527.
M. Carmo, et al., J. Hydrog, Energy 38(12) (2013) 4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151.
T. Bystron, et al., J. Appl. Electrochem 48(6) (2018) 713–723. https://doi:10.1007/s10800-018-1174-6
S. Shiva Kumar, V. Himabindu, Materials Science for Energy Technologies 2(3) (2019) 442-454 https://doi.org/10.1016/j.mset.2019.03.002
J.N. Tiwari, S. Sultan, C.W. Myung, T. Yoon, N. Li, M. Ha, A.M. Harzandi, H.J. Park, D.Y. Kim, S.S. Chandrasekaran, W.G. Lee, V. Vij, H. Kang, T.J. Shin, H.S. Shin, G. Lee, Z. Lee, and K.S. Kim, Nature Energy, 3(9) (2018.) 773-782 https://doi.org/10.1038/s41560-018-0209-x(9).
H.Y. Jung, et al. J. Power Sources, 194 (2) (2009), 972-975
https://doi:10.1016/j.jpowsour.2009.06.030.
S. Cherevko, et al., J. Electroanal. Chem 773 (2016) 69–78. https://doi.org/10.1016/j.jelechem.2016.04.033
S. Cherevko, et al., Catal. Today 262 (2016) 170–180. https://doi.org/10.1016/j.cattod.2015.08.014
V. Krstić , B. Pešovski, Hydrometallurgy, 185 (2019) 71-75. https://doi.org/10.1016/j.hydromet.2019.01.018
S. Choe, B.S. Lee, M.K. Cho, H.J. Kim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, S.Y. Lee, H.S. Park, and J.H. Jang, Applied Catalysis B-Environmental, 226 (2018) 289-294. https://doi.org/10.1016/j.apcatb.2017.12.037.
C. Liu, M. Carmo, G. Bender, A. Everwand, T. Lickert, J.L. Young, T. Smolinka, D. Stolten, and W. Lehnert, Electrochemistry Communications, 97 (2018) 96-99. https://doi.org/10.1016/j.elecom.2018.10.021
Galizzioli D, Tantardi F, Trasatti S. Journal of Applied Electrochemistry 4(1), (1974) 57-67. https://doi.org/10.1007/BF00615906
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐHYD0.01/22-24