Research on efficient synthetic method of β- and δ-carbolines using a Copper catalyst

Authors

  • Ban Van Phuc Institute of Chemistry, Vietnam Academy of Science and Technology
  • Nguyen Minh Quan Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology
  • Nguyen Hien Faculty of Chemistry, Hanoi National University of Education
  • Nguyen Quyet Tien Institute of Chemistry, Vietnam Academy of Science and Technology
  • Truong Thi Thanh Nga Institute of Chemistry, Vietnam Academy of Science and Technology
  • Nguyen Ngoc Tuan Institute of Chemistry, Vietnam Academy of Science and Technology
  • Nguyen Quang An Institute of Chemistry, Vietnam Academy of Science and Technology
  • Cu Hong Hanh Faculty of Chemistry, Hanoi National University of Education
  • Dang Thanh Tuan Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
  • Tran Quang Hung Institute of Chemistry, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.51316/jca.2022.069

Keywords:

C-N coupling, Ulmann reaction, β-carboline, δ-carboline, copper catalysis

Abstract

Methodology for synthesizing of β- and δ-carboline via two steps reaction from 2,3-dibromopyridine and 3,4-dibromopyridine. The intermediate was prepared from the substrate with o-bromophenylboronic acid via site-selective Suzuki-Myaura reaction, then, the final products were obtained by double C-N coupling via the Ulmann reaction of the intermediate with the corresponding amine with copper catalyst.

Downloads

Download data is not yet available.

References

R. S. Alekseyev, A. V. Kurkin M. A. Yurovskaya, Chem. Heterocycl. Com. 45 (2009) 889-925. https://doi.org/10.1007/s10593-009-0373-9

R. Cao, W. Peng, Z. Wang A. Xu, Curr Med Chem 14 (2007) 479-500. https://doi.org/10.2174/092986707779940998

X.-P. Fu, S.-B. Tang, J.-Y. Yang, L.-L. Zhang, C.-C. Xia Y.-F. Ji, Eur. J. Org. Chem. 2019 (2019) 5974-5977. https://doi.org/10.1002/ejoc.201901035

F. Y. Miyake, K. Yakushijin D. A. Horne, Angew. Chem. Int. Ed. Engl. 44 (2005) 3280-3282. https://doi.org/10.1002/anie.200500055

O. B. Smirnova, T. V. Golovko V. G. Granik, Pharm. Chem. J. 44 (2011) 654-678. https://doi.org/10.1007/s11094-011-0540-z

Y. Im J. Y. Lee, Chem. Commun. (Camb) 49 (2013) 5948-5950. https://doi.org/10.1039/c3cc42131g

H. Wang, J. Zhu, B. Shen, B. Wei Z. Wang, Mol. Cryst. Liq. Cryst. 651 (2017) 133-141. https://doi.org/10.1080/15421406.2017.1338073

H. Zhang, R. H. Zhang, L. X. Wang, Y. J. Li, S. G. Liao M. Zhou, Asian J. Org. Chem. 10 (2021) 429-452. https://doi.org/10.1002/ajoc.202000690

E. V. Kumar, J. R. Etukala S. Y. Ablordeppey, Mini Rev. Med. Chem. 8 (2008) 538-554. https://doi.org/10.2174/138955708784534418

O. B. Smirnova, T. V. Golovko V. G. Granik, Pharm. Chem. J. 45 (2011) 389-400. https://doi.org/10.1007/s11094-011-0641-8

J. Dai, W. Dan, U. Schneider J. Wang, Eur. J. Med. Chem. 157 (2018) 622-656. https://doi.org/10.1016/j.ejmech.2018.08.027

D. Uredi, D. R. Motati E. B. Watkins, Org. Lett. 20 (2018) 6336-6339. https://doi.org/10.1021/acs.orglett.8b02441

S. Kumar, A. Singh, K. Kumar V. Kumar, Eur. J. Med. Chem. 142 (2017) 48-73. https://doi.org/10.1016/j.ejmech.2017.05.059

A. Paulo, E. T. Gomes, J. Steele, D. C. Warhurst P. J. Houghton, Planta Med. 66 (2000) 30-34. https://doi.org/10.1055/s-2000-11106

V. Snieckus D. P. J. S. Uccello, Synfacts 8 (2012) 0247-0247. https://doi.org/10.1055/s-0031-1290292

G. V. Subbaraju, J. Kavitha, D. Rajasekhar J. I. Jimenez, J. Nat. Prod. 67 (2004) 461-462. https://doi.org/10.1021/np030392y

S. W. Yang, M. Abdel-Kader, S. Malone, M. C. Werkhoven, J. H. Wisse, I. Bursuker, K. Neddermann, C. Fairchild, C. Raventos-Suarez, A. T. Menendez, K. Lane D. G. Kingston, J. Nat. Prod. 62 (1999) 976-983. https://doi.org/10.1021/np990035g

S. Gümüş, N. Aslan, N. N. Büyükadalı A. Gümüş, Tetrahedron: Asymmetry 28 (2017) 479-484. https://doi.org/10.1016/j.tetasy.2017.02.014

R. Yin, M. Zhang, C. Hao, W. Wang, P. Qiu, S. Wan, L. Zhang T. Jiang, Chem. Commun. (Camb) 49 (2013) 8516-8518. https://doi.org/10.1039/c3cc45203d

J. S. Moon, D. H. Ahn, S. W. Kim, S. Y. Lee, J. Y. Lee J. H. Kwon, RSC Adv. 8 (2018) 17025-17033. https://doi.org/10.1039/c8ra01761a

J. Tan, B. Wang, Z. Huang, X. Lv, W. Yi, S. Zhuang L. Wang, J. Mater. Chem. C 4 (2016) 5222-5230. https://doi.org/10.1039/c6tc01266c

R. S. Alekseev, A. V. Kurkin M. A. Yurovskaya, Chem. Heterocycl. Com. 48 (2012) 1235-1250. https://doi.org/10.1007/s10593-012-1127-7

R. Riggs D. Smith, in Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford, 2008, pp. 857-973. https://doi.org/10.1016/B978-008044992-0.01117-2

P. Ábrányi-Balogh, B. Volk, G. Keglevich M. Milen, Comput. Theor. Chem. 1097 (2016) 48-60. https://doi.org/10.1016/j.comptc.2016.10.008

S. Ramu, S. Srinath, A. A. kumar, B. Baskar, K. Ilango K. K. Balasubramanian, Mol. Catal. 468 (2019) 86-93. https://doi.org/10.1016/j.mcat.2019.02.018

S. Dhara, R. Singha, A. Ahmed, H. Mandal, M. Ghosh, Y. Nuree J. K. Ray, RSC Adv. 4 (2014) 45163-45167. https://doi.org/10.1039/c4ra08457h

T. T. Wang, D. Zhang W. W. Liao, Chem. Commun. (Camb) 54 (2018) 2048-2051. https://doi.org/10.1039/c8cc00040a

F. Nissen, V. Richard, C. Alayrac B. Witulski, Chem. Commun. (Camb) 47 (2011) 6656-6658. https://doi.org/10.1039/c1cc11298h

T. Q. Hung, D. T. Hieu, D. Van Tinh, H. N. Do, T. A. Nguyen Tien, D. Van Do, L. T. Son, N. H. Tran, N. Van Tuyen, V. M. Tan, P. Ehlers, T. T. Dang P. Langer, Tetrahedron 75 (2019) 130569. https://doi.org/10.1016/j.tet.2019.130569

O. A. Namjoshi, A. Gryboski, G. O. Fonseca, M. L. Van Linn, Z. J. Wang, J. R. Deschamps J. M. Cook, J. Org. Chem. 76 (2011) 4721-4727. https://doi.org/10.1021/jo200425m

G. Wang, X. You, Y. Gan Y. Liu, Org. Lett. 19 (2017) 110-113. https://doi.org/10.1021/acs.orglett.6b03385

H. Wen, W. Cao, Y. Liu, L. Wang, P. Chen Y. Tang, J. Org. Chem. 83 (2018) 13308-13324. https://doi.org/10.1021/acs.joc.8b02112

H. Detert J. Letessier, Synthesis 2012 (2011) 290-296. https://doi.org/10.1055/s-0031-1289652

J. Cao, Y. Xu, Y. Kong, Y. Cui, Z. Hu, G. Wang, Y. Deng G. Lai, Org. Lett. 14 (2012) 38-41. https://doi.org/10.1021/ol2027762

T. Q. Hung, T. T. Dang, J. Janke, A. Villinger P. Langer, Org. Biomol. Chem. 13 (2015) 1375-1386. https://doi.org/10.1039/c4ob02226b

P. Langer, T. T. Dang, T. Q. Hung, H. N. Do, N. M. Quan, B. Van Phuc, D. Van Tinh, N. Q. Tien, T. T. T. Nga V. T. Nguyen, Synlett 32 (2021) 611-615. https://doi.org/10.1055/s-0040-1706641

Published

31-12-2022

Issue

Section

Full Articles

How to Cite

Research on efficient synthetic method of β- and δ-carbolines using a Copper catalyst . (2022). Vietnam Journal of Catalysis and Adsorption, 11(4), 50-56. https://doi.org/10.51316/jca.2022.069

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 168

You may also start an advanced similarity search for this article.