Efficient synthesis of bis(indolyl)methanes by the alkylation of indoles with alcohols using heterogeneous CuFe2O4 catalyst
DOI:
https://doi.org/10.51316/jca.2021.057Keywords:
CuFe2O4 catalyst, Sustainable process, Alkylation, Bifunctional catalysis, Indole functionalization Bis(3-indolyl)methane synthesisAbstract
Bis(3-indolyl)methanes (BIM) are highly valuable and appear in the core structure of many natural products and pharmacologically active compounds (anticancer, anti-inflammatory, antiobesity, antimetastatic, antimicrobial, etc.). Herein, we have disclosed an air stable and highly efficient CuFe2O4 heterogeneous catalyst for alkylation of indoles with alcohols to give bis(3-indolyl)methanes in very good yields. The CuFe2O4 catalyst has been found to be magnetically recycled at least five times without losing significant catalytic activity.
Downloads
References
R. J. Sundberg, Indoles, Academic Press, San Diego, 1996.
J. F. Austin, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 1172. https://doi.org/10.1021/ja017255c;
Y. C. Wan, Y. H. Li, C. X. Yan, M. Yan, Z. L. Tang, Eur. J. Med. Chem. 2019, 183, 111691. https://doi.org/https://doi.org/10.1016/j.ejmech.2019.111691.
Y. Zhang, X. R. Yang, H. Zhou, S. L. Li, Y. Zhu, Y. Li, Org. Chem. Front. 2018, 5, 2120. https://doi.org/10.1039/C8QO00341F;
F. Ling, L. Xiao, L. Fang, C. Feng, Z. Xie, Y. Lv, W. Zhong, Org. Biomol. Chem. 2018, 16, 9274. https://doi.org/10.1039/C8OB02805B;
R. R. Jella, R. Nagarajan, Tetrahedron 2013, 69, 10249. https://doi.org/https://doi.org/10.1016/j.tet.2013.10.037.
M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev. 2010, 110, 2250. https://doi.org/10.1021/cr900195a.;
S. Wang, K. Fang, G. Dong, S. Chen, N. Liu, Z. Miao, J. Yao, J. Li, W. Zhang, C. Sheng, J. Med. Chem. 2015, 58, 6678. https://doi.org/https://doi.org/10.1016/j.ejmech.2014.10.065;
M.-Z. Zhang, Q. Chen, G.-F. Yang, Eur. J. Med. Chem. 2015, 89, 421https://doi.org/https://doi.org/10.1016/j.ejmech.2014.10.065;
S. B. Bharate, J. B. Bharate, S. I. Khan, B. L. Tekwani, M. R. Jacob, R. Mudududdla, R. R. Yadav, B. Singh, P. R. Sharma, S. Maity, B. Singh, I. A. Khan, R. A. Vishwakarma, Eur. J. Med. Chem. 2013, 63, 435. https://doi.org/https://doi.org/10.1016/j.ejmech.2013.02.024;
M. Marrelli, X. Cachet, F. Conforti, R. Sirianni, A. Chimento, V. Pezzi, S. Michel, G. A. Statti, F. Menichini, Nat. Prod. Res. 2013, 27, 2039. https://doi.org/10.1080/14786419.2013.824440.;
J. Lee, Nutr. Cancer 2019, 71, 992. https://doi.org/10.1080/01635581.2019.1577979.
J. A. Joule, K. Mills, Heterocyclic Chemistry, 5th ed., Wiley, UK, 2020. https://doi.org/10.1201/9781003072850;
G. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875. https://doi.org/10.1021/cr0505270.;
S. L. You, Q. Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190. https://doi.org/10.1039/B817310A.
M. Bandini, A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9608. https://doi.org/10.1002/anie.200901843.;
M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev. 2010, 110, 2250. https://doi.org/10.1021/cr900195a.
X. Liu, S. Ma, P. H. Toy, Org. Lett. 2019, 21, 9212. https://doi.org/10.1021/acs.orglett.9b03578;
T. Yang, H. Lu, Y. Shu, Y. Ou, L. Hong, C.-K. Au, R. Qiu, Org. Lett. 2020, 22, 827. https://doi.org/10.1021/acs.orglett.9b03578;
C. D. Huo, C. G. Sun, C. Wang, X. D. Jia, W. J. Chang, ACS Sustainable Chem. Eng. 2013, 1, 549. https://doi.org/10.1021/sc400033t;
S. Bayindir, N. A, Saracoglu, RSC Adv. 2016, 6, 72959. https://doi.org/10.1039/C6RA16192H;
G. M. Shelke, V. K. Rao, R. K. Tiwari, B. S. Chhikara, K. Parang, A. Kumar, RSC Adv. 2013, 3, 22346. https://doi.org/10.1039/C3RA44693J;
T. A. Grigolo, S. Denofre, F. Manarin, G. V. Botteselle, P. Brandão, A. Amaral, E. A. de Campos, Dalton Trans. 2017, 46, 15698. https://doi.org/10.1039/C7DT03364H.
S. Whitney, R. Grigg, A. Derrick, A. Keep, Org. Lett. 2007, 9, 3299. https://doi.org/10.1021/ol071274v.
S. Zhang, W. Fan, H. Qu, C. Xiao, N. Wang, L. Shu, Q. Hu, L. Liu, Curr. Org. Chem. 2012, 16, 942. https://doi.org/10.2174/138527212800194827;
A. E. Putra, K. Takigawa, H. Tanaka, Y. Ito, Y. Oe, T. Ohta, Eur. J. Org. Chem. 2013, 6344. https://doi.org/10.1002/ejoc.201300744;
N. Biswas, R. Sharma and D. Srimani, Adv. Synth. Catal., 2020, 362, 2902. https://doi.org/10.1002/adsc.202000326.
H. Hikawa, Y. Yokoyama, RSC Adv. 2013, 3, 1061. https://doi.org/10.1039/C2RA21887A.
S. Badigenchala, D. Ganapathy, A. Das, R. Singh, G. Sekar, Synthesis 2014, 46, 101. https://doi.org/10.1055/s-0033-1340052.
V. Polshettiwar, R. S. Varma, Green Chem. 2010, 12, 743. https://doi.org/10.1039/B921171C;
C. Descorme, P. Gallezot, C. Geantet, C. George, ChemCatChem 2012, 4, 1897. https://doi.org/10.1002/cctc.201200483.;
P. Munnik, P. E. de Jongh, K. P. de Jong, Chem. Rev. 2015, 115, 6687. https://doi.org/10.1021/cr500486u;
L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981. https://doi.org/10.1021/acs.chemrev.7b00776.
R. R. Hosseinzadeh‐Khanmiri, Y. Kamel, Z. Keshvari, A. Mobaraki, G. H. Shahverdizadeh, E. Vessally, M. Babazadeh, Appl. Organomet. Chem. 2018, 32, e4452. https://doi.org/10.1002/aoc.4452.
H. Mohammadi, H. R. Shaterian, ChemistrySelect 2019, 4, 8700. https://doi.org/10.1002/slct.201901586.
R. Hudson, Y. Feng, R. S. Varma, A, Moores, Green Chem. 2014,16, 4493. https://doi.org/10.1039/C4GC00418C;
N. Yan, C. Xiao, Y. Kou, Coord. Chem. Rev. 2010, 254, 1179. https://doi.org/10.1016/j.ccr.2010.02.015.
N. Panda, A. K. Jena, S. Mohapatra, Chem. Lett. 2011, 40, 956. https://doi.org/10.1246/cl.2011.956;
N. Panda, A. K. Jena, S. Mohapatra, S. R. Rout, Tetrahedron Lett. 2011, 51, 1924. https://doi.org/https://doi.org/10.1016/j.tetlet.2011.02.050;
R. Zhang, J. Liu, S. Wang, J. Niu, C. Xia, W. Sun, ChemCatChem 2011, 3, 146. https://doi.org/10.1002/cctc.201000254;
K. Swapna, S. N. Murthy, M. T. Jyothi, Y. V. D. Nageswar, Org. Biomol. Chem. 2011, 5989. https://doi.org/10.1039/C1OB05597F.;
R. Hudson, Synlett 2013, 24, 1309. https://doi.org/10.1055/s-0033-1338949.
P. N. Amaniampong, Q. T. Trinh, J. J. Varghese, R. Behling, S. Valange, S. H. Mushrif, F. Jérôme, Green Chemistry 2018, 20, 2730. https://doi.org/10.1039/C8GC00961A.
P. N. Amaniampong, Q. T. Trinh, K. De Oliveira Vigier, D. Q. Dao, N. H. Tran, Y. Wang, M. P. Sherburne, F. Jérôme, J. Am. Chem. Soc., 2019, 141, 14772. https://doi.org/10.1039/C8GC00961A.
Q. T. Trinh, B. K. Chethana, S. H. Mushrif, J. Phys. Chem. C 2015, 119, 17137. https://doi.org/10.1021/acs.jpcc.5b03534.
J. E. De Vrieze, J. W. Thybaut, M. Saeys, ACS Catal. 2018, 8, 7539. https://doi.org/10.1021/acscatal.8b01652.
C. Sarkar, S. Pendem, A. Shrotri, D. Q. Dao, P. P. T. Mai, T. N. Nguyen, D. R. Chandaka, T. V. Rao, Q. T. Trinh, M. P. Sherburne, J. Mondal, ACS Appl. Mater. Interfaces 2019, 11, 11722. https://doi.org/10.1021/acsami.8b18675.
R. Singuru, Q. T. Trinh, B. Banerjee, B. G. Rao, L. Bai, A. Bhaumik, B. M. Reddy, H. Hirao, J. Mondal, ACS Omega 2016, 1, 1121. https://doi.org/10.1021/acsomega.6b00331.
M. Schlangen, H. Schwarz, Hel. Chim. Acta 2008, 91, 379. https://doi.org/10.1002/hlca.200890043.
Q. T. Trinh, J. Yang, J. Y. Lee, M. Saeys, J. Catal. 2012, 291, 26. https://doi.org/10.1016/j.jcat.2012.04.001.
P. N. Amaniampong, Q. T. Trinh, B. Wang, A. Borgna, Y. Yang, S. H. Mushrif, Angew. Chem. Int. Ed. 2015, 54, 8928. https://doi.org/10.1002/ange.201503916.
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.01-2018.30