Efficient synthesis of bis(indolyl)methanes by the alkylation of indoles with alcohols using heterogeneous CuFe2O4 catalyst

Authors

  • Ha Minh Tuan Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
  • Bui Hoang Yen Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
  • Nguyen Ngoc Khanh Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
  • Ngo Thi Thuan Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
  • Tran Quang Hung Institute of Chemistry, Vietnam Academy of Science and Technology
  • Vu Xuan Hoan Vietnam Petroleum Institute
  • Dang Thanh Tuan Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam

DOI:

https://doi.org/10.51316/jca.2021.057

Keywords:

CuFe2O4 catalyst, Sustainable process, Alkylation, Bifunctional catalysis, Indole functionalization Bis(3-indolyl)methane synthesis

Abstract

Bis(3-indolyl)methanes (BIM) are highly valuable and appear in the core structure of many natural products and pharmacologically active compounds (anticancer, anti-inflammatory, antiobesity, antimetastatic, antimicrobial, etc.). Herein, we have disclosed an air stable and highly efficient CuFe2O4 heterogeneous catalyst for alkylation of indoles with alcohols to give bis(3-indolyl)methanes in very good yields. The CuFe2O4 catalyst has been found to be magnetically recycled at least five times without losing significant catalytic activity.

Downloads

Download data is not yet available.

References

R. J. Sundberg, Indoles, Academic Press, San Diego, 1996.

J. F. Austin, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 1172. https://doi.org/10.1021/ja017255c;

Y. C. Wan, Y. H. Li, C. X. Yan, M. Yan, Z. L. Tang, Eur. J. Med. Chem. 2019, 183, 111691. https://doi.org/https://doi.org/10.1016/j.ejmech.2019.111691.

Y. Zhang, X. R. Yang, H. Zhou, S. L. Li, Y. Zhu, Y. Li, Org. Chem. Front. 2018, 5, 2120. https://doi.org/10.1039/C8QO00341F;

F. Ling, L. Xiao, L. Fang, C. Feng, Z. Xie, Y. Lv, W. Zhong, Org. Biomol. Chem. 2018, 16, 9274. https://doi.org/10.1039/C8OB02805B;

R. R. Jella, R. Nagarajan, Tetrahedron 2013, 69, 10249. https://doi.org/https://doi.org/10.1016/j.tet.2013.10.037.

M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev. 2010, 110, 2250. https://doi.org/10.1021/cr900195a.;

S. Wang, K. Fang, G. Dong, S. Chen, N. Liu, Z. Miao, J. Yao, J. Li, W. Zhang, C. Sheng, J. Med. Chem. 2015, 58, 6678. https://doi.org/https://doi.org/10.1016/j.ejmech.2014.10.065;

M.-Z. Zhang, Q. Chen, G.-F. Yang, Eur. J. Med. Chem. 2015, 89, 421https://doi.org/https://doi.org/10.1016/j.ejmech.2014.10.065;

S. B. Bharate, J. B. Bharate, S. I. Khan, B. L. Tekwani, M. R. Jacob, R. Mudududdla, R. R. Yadav, B. Singh, P. R. Sharma, S. Maity, B. Singh, I. A. Khan, R. A. Vishwakarma, Eur. J. Med. Chem. 2013, 63, 435. https://doi.org/https://doi.org/10.1016/j.ejmech.2013.02.024;

M. Marrelli, X. Cachet, F. Conforti, R. Sirianni, A. Chimento, V. Pezzi, S. Michel, G. A. Statti, F. Menichini, Nat. Prod. Res. 2013, 27, 2039. https://doi.org/10.1080/14786419.2013.824440.;

J. Lee, Nutr. Cancer 2019, 71, 992. https://doi.org/10.1080/01635581.2019.1577979.

J. A. Joule, K. Mills, Heterocyclic Chemistry, 5th ed., Wiley, UK, 2020. https://doi.org/10.1201/9781003072850;

G. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875. https://doi.org/10.1021/cr0505270.;

S. L. You, Q. Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190. https://doi.org/10.1039/B817310A.

M. Bandini, A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9608. https://doi.org/10.1002/anie.200901843.;

M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev. 2010, 110, 2250. https://doi.org/10.1021/cr900195a.

X. Liu, S. Ma, P. H. Toy, Org. Lett. 2019, 21, 9212. https://doi.org/10.1021/acs.orglett.9b03578;

T. Yang, H. Lu, Y. Shu, Y. Ou, L. Hong, C.-K. Au, R. Qiu, Org. Lett. 2020, 22, 827. https://doi.org/10.1021/acs.orglett.9b03578;

C. D. Huo, C. G. Sun, C. Wang, X. D. Jia, W. J. Chang, ACS Sustainable Chem. Eng. 2013, 1, 549. https://doi.org/10.1021/sc400033t;

S. Bayindir, N. A, Saracoglu, RSC Adv. 2016, 6, 72959. https://doi.org/10.1039/C6RA16192H;

G. M. Shelke, V. K. Rao, R. K. Tiwari, B. S. Chhikara, K. Parang, A. Kumar, RSC Adv. 2013, 3, 22346. https://doi.org/10.1039/C3RA44693J;

T. A. Grigolo, S. Denofre, F. Manarin, G. V. Botteselle, P. Brandão, A. Amaral, E. A. de Campos, Dalton Trans. 2017, 46, 15698. https://doi.org/10.1039/C7DT03364H.

S. Whitney, R. Grigg, A. Derrick, A. Keep, Org. Lett. 2007, 9, 3299. https://doi.org/10.1021/ol071274v.

S. Zhang, W. Fan, H. Qu, C. Xiao, N. Wang, L. Shu, Q. Hu, L. Liu, Curr. Org. Chem. 2012, 16, 942. https://doi.org/10.2174/138527212800194827;

A. E. Putra, K. Takigawa, H. Tanaka, Y. Ito, Y. Oe, T. Ohta, Eur. J. Org. Chem. 2013, 6344. https://doi.org/10.1002/ejoc.201300744;

N. Biswas, R. Sharma and D. Srimani, Adv. Synth. Catal., 2020, 362, 2902. https://doi.org/10.1002/adsc.202000326.

H. Hikawa, Y. Yokoyama, RSC Adv. 2013, 3, 1061. https://doi.org/10.1039/C2RA21887A.

S. Badigenchala, D. Ganapathy, A. Das, R. Singh, G. Sekar, Synthesis 2014, 46, 101. https://doi.org/10.1055/s-0033-1340052.

V. Polshettiwar, R. S. Varma, Green Chem. 2010, 12, 743. https://doi.org/10.1039/B921171C;

C. Descorme, P. Gallezot, C. Geantet, C. George, ChemCatChem 2012, 4, 1897. https://doi.org/10.1002/cctc.201200483.;

P. Munnik, P. E. de Jongh, K. P. de Jong, Chem. Rev. 2015, 115, 6687. https://doi.org/10.1021/cr500486u;

L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981. https://doi.org/10.1021/acs.chemrev.7b00776.

R. R. Hosseinzadeh‐Khanmiri, Y. Kamel, Z. Keshvari, A. Mobaraki, G. H. Shahverdizadeh, E. Vessally, M. Babazadeh, Appl. Organomet. Chem. 2018, 32, e4452. https://doi.org/10.1002/aoc.4452.

H. Mohammadi, H. R. Shaterian, ChemistrySelect 2019, 4, 8700. https://doi.org/10.1002/slct.201901586.

R. Hudson, Y. Feng, R. S. Varma, A, Moores, Green Chem. 2014,16, 4493. https://doi.org/10.1039/C4GC00418C;

N. Yan, C. Xiao, Y. Kou, Coord. Chem. Rev. 2010, 254, 1179. https://doi.org/10.1016/j.ccr.2010.02.015.

N. Panda, A. K. Jena, S. Mohapatra, Chem. Lett. 2011, 40, 956. https://doi.org/10.1246/cl.2011.956;

N. Panda, A. K. Jena, S. Mohapatra, S. R. Rout, Tetrahedron Lett. 2011, 51, 1924. https://doi.org/https://doi.org/10.1016/j.tetlet.2011.02.050;

R. Zhang, J. Liu, S. Wang, J. Niu, C. Xia, W. Sun, ChemCatChem 2011, 3, 146. https://doi.org/10.1002/cctc.201000254;

K. Swapna, S. N. Murthy, M. T. Jyothi, Y. V. D. Nageswar, Org. Biomol. Chem. 2011, 5989. https://doi.org/10.1039/C1OB05597F.;

R. Hudson, Synlett 2013, 24, 1309. https://doi.org/10.1055/s-0033-1338949.

P. N. Amaniampong, Q. T. Trinh, J. J. Varghese, R. Behling, S. Valange, S. H. Mushrif, F. Jérôme, Green Chemistry 2018, 20, 2730. https://doi.org/10.1039/C8GC00961A.

P. N. Amaniampong, Q. T. Trinh, K. De Oliveira Vigier, D. Q. Dao, N. H. Tran, Y. Wang, M. P. Sherburne, F. Jérôme, J. Am. Chem. Soc., 2019, 141, 14772. https://doi.org/10.1039/C8GC00961A.

Q. T. Trinh, B. K. Chethana, S. H. Mushrif, J. Phys. Chem. C 2015, 119, 17137. https://doi.org/10.1021/acs.jpcc.5b03534.

J. E. De Vrieze, J. W. Thybaut, M. Saeys, ACS Catal. 2018, 8, 7539. https://doi.org/10.1021/acscatal.8b01652.

C. Sarkar, S. Pendem, A. Shrotri, D. Q. Dao, P. P. T. Mai, T. N. Nguyen, D. R. Chandaka, T. V. Rao, Q. T. Trinh, M. P. Sherburne, J. Mondal, ACS Appl. Mater. Interfaces 2019, 11, 11722. https://doi.org/10.1021/acsami.8b18675.

R. Singuru, Q. T. Trinh, B. Banerjee, B. G. Rao, L. Bai, A. Bhaumik, B. M. Reddy, H. Hirao, J. Mondal, ACS Omega 2016, 1, 1121. https://doi.org/10.1021/acsomega.6b00331.

M. Schlangen, H. Schwarz, Hel. Chim. Acta 2008, 91, 379. https://doi.org/10.1002/hlca.200890043.

Q. T. Trinh, J. Yang, J. Y. Lee, M. Saeys, J. Catal. 2012, 291, 26. https://doi.org/10.1016/j.jcat.2012.04.001.

P. N. Amaniampong, Q. T. Trinh, B. Wang, A. Borgna, Y. Yang, S. H. Mushrif, Angew. Chem. Int. Ed. 2015, 54, 8928. https://doi.org/10.1002/ange.201503916.

Published

30-10-2021

Issue

Section

Full Articles

How to Cite

Efficient synthesis of bis(indolyl)methanes by the alkylation of indoles with alcohols using heterogeneous CuFe2O4 catalyst. (2021). Vietnam Journal of Catalysis and Adsorption, 10(3), 98-104. https://doi.org/10.51316/jca.2021.057

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 452

You may also start an advanced similarity search for this article.