Metal-Organic Framework Fe3O(BPDC)3 as an efficient catalyst for the oxidative couling reaction of benzaldehyde and (E)-1-phenylethan-1-one O-acetyl oxime
DOI:
https://doi.org/10.51316/jca.2020.005Keywords:
acetyl oxime, benzaldehyde, di-tert-butyl peroxide, Arylpyridines, Fe3O(BPDC)3Abstract
A porous crytalline metal-organic framework Fe3O(BPDC)3 was synthesized, and its properties were characterized by various techniques, including X-ray powder diffraction (PXRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen physisorption measurements. The Fe3O(BPDC)3 was used as an efficient catalyst for the oxidative coupling reaction of benzaldehyde and (E)-1-phenylethan-1-one O-acetyl oxime to form 2,4,6-triphenylpyridine as desired product. The reaction could proceed readily, with more than 83 % reaction yield being achieved after 360 min at 140 oC in the presence of 10 mol% Fe3O(BPDC)3) catalyst and Di-tert-butyl peroxide as an oxidant. This Fe-MOF exhibited higher activity than other MOFs and traditional homogeneous catalysts in the oxidative coupling reaction. The transformation could only proceed to obtain main product in the presence of Fe3O(BPDC)3.
Downloads
References
A. Islam, H. Sugihara, H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry 158 (2003) 131-138. https://doi.org/10.1016/S1010-6030(03)00027-3
A. G. Fang, J. V. Mello, and N. S. Finney, Tetrahedron 60 (2004) 11075-11087. https://doi.org/10.1016/j.tet.2004.08.049
C. Doebelin, P. Wagner, F. Bihel, N. Humbert, C. A. Kenfack, Y. Mely, J. J. Bourguignon, and M. Schmitt, The journal of Organic Chemistry 79 (2014) 908-918. https://doi.org/10.1021/jo402200q
C. Allais, J. M. Grassot, J. Rodriguez, and T. Constantieux, Chemical Reviews 114 (2014) 10829-10868. https://doi.org/10.1021/cr500099b
N. Montazeri, S. Mahjoob, Chinese Chemical Letters 23 (2012) 419-422. https://doi.org/10.1016/j.cclet.2012.01.035
S. P. Satasia, P. N. Kalaria, and D. K. Raval, RSC. Advances 3 (2013) 3184-3188. https://doi.org/10.1039/C3RA23052J
Y. M. Ren, Z. Zhang and S. Jin, Synthetic Communications 46 (2016) 528-535. https://doi.org/10.1080/00397911.2016.1152375
M. B. Boroujeni, A. Hashemzadeh, M. T. Faroughi, A. Shaabani and M. M. Amini, RSC. Advances 6 (2016) 100195–100202. https://doi.org/10.1039/C6RA24574A
E. Tabrizian, A. Amoozadeh, S. Rahmani, E. Imanifar, S. Azhari, M. Malmir, Chinese Chemical Letters 26 (2015) 1278-1282. https://doi.org/10.1016/j.cclet.2015.06.013
M. A. Zolfigol, F. Karimi, M. Yarie, M. Torabi, Applied Organometallic Chemistry 32 (2018) 4063-4073. https://doi.org/10.1002/aoc.4063
H. Wang, W. Zhao, J. Du, F. Wei, Q. Chen and X. Wang, RSC. Advances 9 (2019) 5158-5163. https://doi.org/10.1039/C9RA00653B
M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'keeffe and O. M. Yaghi, Accounts of Chemical Research 34 (2001) 319-330. https://doi.org/10.1021/ar000034b
A. M. Shultz, O. K. Farha, J. T. Hupp and S. T. Nguyen, Journal of the American Chemical Society 131 (2009) 4204-4205. https://doi.org/10.1021/ja900203f
L. Zhu, X. Q. Liu, H. L. Jiang, and L. B. Sun, Chemical Reviews 117 (2017) 8129-8176. https://doi.org/10.1021/acs.chemrev.7b00091
O. A. Kholdeeva, Catalysis Today 278 (2016) 22-29. https://doi.org/10.1016/j.cattod.2016.06.010
A. Dhakshiamoorthy, M. Alvaro, P. Horcajada, E. Gibson, M. Vishnurarthan, A. Vinmont, J. M. Greneche, C. Serre, M. Daturi, and H. Garcia, ACS Catalysis 2 (2012) 2060-2065. https://doi.org/10.1021/cs300345b
D. Wang, M. Wang, and Z. Li, ACS Catalysis 5 (2015) 6852-6857. https://doi.org/10.1021/acscatal.5b01949
I. Luz, F.X. Llabrés i Xamena, A. Corma, Journal of Catalysis 276 (2010) 134-140. https://doi.org/10.1016/j.jcat.2010.09.010
N. T. S. Phan, C. W. Jones, Journal of Molecular Catalysis A: Chemical 253 (2006) 123-131. https://doi.org/10.1016/j.molcata.2006.03.019
Downloads
Published
Data Availability Statement
Data