Amberlyst-15, an efficient heterogeneous catalyst for the 1,4-dihydropyridine synthesis

Authors

  • Tran Quang Hung Institute of Chemistry, Vietnam Academy of Science and Technology Author
  • Pham Thi Thanh Loan Faculty of Chemistry, Hanoi National University of Education Author
  • Do Thi Lan Nhi Faculty of Chemistry, Hanoi National University of Education Author
  • Ban Van Phuc Institute of Chemistry, Vietnam Academy of Science and Technology Author
  • Nguyen Hien Faculty of Chemistry, Hanoi National University of Education Author
  • Dang Thanh Tuan Faculty of Chemistry, Hanoi University of Science, Vietnam National University Author
  • Duong Ngoc Tu Institute of Chemistry, Vietnam Academy of Science and Technology Author
  • Do Van Dang Faculty of Chemistry, Hanoi University of Science, Vietnam National University Author
  • Vu Xuan Hoan Vietnam Petroleum Institute Author

DOI:

https://doi.org/10.51316/jca.2022.075

Keywords:

1,4-dihydropyridine, amberlyst-15, heterogeneous catalyst

Abstract

The paper reported synthesizing 1,4-dihydropyridine (1,4-DHP) from β-ketoester, aromatic aldehyde, and ammonium acetate via a two-step, using heterogeneous catalyst Amberlyst-15 in high yields at room temperature. The method was applied to synthesize some 1,4-DHP derivatives. Moreover, the catalyst was reused at least five times without loss of catalytic activity under eco-friendly conditions.

Downloads

Download data is not yet available.

References

D. J. Triggle, Biochem. Pharmacol. 74 (2007) 1-9. https://doi.org/10.1016/j.bcp.2007.01.016

F. Bossert, H. Meyer E. Wehinger, Angewandte Chemie International Edition in English 20 (1981) 762-769. https://doi.org/10.1002/anie.198107621

B. Loev, M. M. Goodman, M. K. Snader, R. Tedeschi E. Macko, J. Med. Chem. 17 (1974) 956-965. https://doi.org/10.1021/jm00255a010

D. Viradiya, S. Mirza, F. Shaikh, R. Kakadiya, A. Rathod, N. Jain, R. Rawal A. Shah, Anticancer Agents Med Chem 17 (2017) 1003-1013. https://doi.org/10.2174/1871520616666161206143251

A. Idhayadhulla, R. S. Kumar, A. J. A. Nasser, S. Kavimani S. Indhumathy, Pharm. Chem. J. 49 (2015) 463-466. https://doi.org/10.1007/s11094-015-1305-x

V. M. Gadotti, C. Bladen, F. X. Zhang, L. Chen, M. G. Gunduz, R. Simsek, C. Safak G. W. Zamponi, Pflugers Archiv : European journal of physiology 467 (2015) 2485-2493. https://doi.org/10.1007/ s00424-015-1725-1

T. Takenaka, S. Usuda, T. Nomura, H. Maeno T. Sado, Arzneimittel-Forschung 26 (1976) 2172-2178.

R. S. Kumar, A. Idhayadhulla, A. J. Nasser, S. Kavimani S. Indumathy, Indian journal of pharmaceutical sciences 72 (2010) 719-725. https://doi.org/10.4103/0250-474X.84580

L. M. Tarasenko, K. S. Neporada V. Klusha, Bull. Exp. Biol. Med. 133 (2002) 369-371. https://doi.org/ 10.1023/a:1016250121896

R. Budriesi, P. Ioan, A. Locatelli, S. Cosconati, A. Leoni, M. P. Ugenti, A. Andreani, R. Di Toro, A. Bedini, S. Spampinato, L. Marinelli, E. Novellino A. Chiarini, J. Med. Chem. 51 (2008) 1592-1600. https://doi.org/10.1021/jm070681+

A. Hantzsch, Justus Liebig's Annalen der Chemie 215 (1882) 1-82. https://doi.org/10.1002/jlac. 18822150102

M. De Luca, G. Ioele G. Ragno, Pharmaceutics 11 (2019) 85. https://doi.org/10.3390/pharmaceutics 11020085

M. Baumann I. R. Baxendale, Beilstein J Org Chem 9 (2013) 2265-2319. https://doi.org/10.3762/ bjoc.9.265

V. K. Sharma S. K. Singh, RSC Advances 7 (2017) 2682-2732. https://doi.org/10.1039/c6ra24823c

A. Debache, R. Boulcina, A. Belfaitah, S. Rhouati B. Carboni, Synlett 2008 (2008) 509-512. https://doi.org/10.1055/s-2008-1032093

L.-M. Wang, J. Sheng, L. Zhang, J.-W. Han, Z.-Y. Fan, H. Tian C.-T. Qian, Tetrahedron 61 (2005) 1539-1543. https://doi.org/10.1016/j.tet.2004.11.079

S. R. Cherkupally R. Mekala, Chem Pharm Bull (Tokyo) 56 (2008) 1002-1004. https://doi.org/ 10.1248/cpb.56.1002

S. Ko, M. N. V. Sastry, C. Lin C.-F. Yao, Tetrahedron Lett. 46 (2005) 5771-5774. https://doi.org/10.1016/ j.tetlet.2005.05.148

G. Sabitha, G. S. K. K. Reddy, C. S. Reddy J. S. Yadav, Tetrahedron Lett. 44 (2003) 4129-4131. https://doi.org/10.1016/s0040-4039(03)00813-x

N. Tewari, N. Dwivedi R. P. Tripathi, Tetrahedron Lett. 45 (2004) 9011-9014. https://doi.org/10.1016/ j.tetlet.2004.10.057

J. H. Lee, Tetrahedron Lett. 46 (2005) 7329-7330. https://doi.org/10.1016/j.tetlet.2005.08.137

S. Ko C.-F. Yao, Tetrahedron 62 (2006) 7293-7299. https://doi.org/10.1016/j.tet.2006.05.037

G. V. Sharma, K. L. Reddy, P. S. Lakshmi P. R. Krishna, Synthesis 2006 (2006) 55-58. https://doi.org/10.1055/s-2005-921744

S. Paul, R. Gupta, R. Gupta A. Loupy, Synthesis 2007 (2007) 2835-2838. https://doi.org/10.1055/ s-2007-983839

D. R. Patil D. S. Dalal, Lett. Org. Chem. 8 (2011) 477-483. https://doi.org/10.2174/157017811796504891

A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati B. Carboni, Tetrahedron Lett. 50 (2009) 5248-5250.https://doi.org/10.1016/j.tetlet.2009.07.018

F. Tamaddon, Z. Razmi A. A. Jafari, Tetrahedron Lett. 51 (2010) 1187-1189. https://doi.org/ 10.1016/j.tetlet.2009.12.098

X. Y. Wu, Synth. Commun. 42 (2011) 454-459. https://doi.org/10.1080/00397911.2010.525773

S. X. Wang, Z. Y. Li, J. C. Zhang J. T. Li, Ultrason. Sonochem. 15 (2008) 677-680. https://doi.org/ 10.1016/j.ultsonch.2008.02.009

H. Adibi, H. A. Samimi M. Beygzadeh, Catal. Commun. 8 (2007) 2119-2124. https://doi.org/10.1016/j.catcom.2007.04.022

M. Lei, L. Ma L. Hu, Synth. Commun. 41 (2011) 1969-1976. https://doi.org/10.1080/00397911.2010.494814

R. A. Sheldon R. S. Downing, Appl. Catal. A Gen. 189 (1999) 163-183. https://doi.org/10.1016/s0926-860x(99)00274-4

R. A. Sheldon J. Dakka, Catal. Today 19 (1994) 215-245. https://doi.org/10.1016/0920-5861(94)80186-x

S. Palaniappan A. John, J. Mol. Catal. A: Chem. 233 (2005) 9-15. https://doi.org/10.1016/j.molcata. 2005.02.002

M. Maheswara, V. Siddaiah, Y. K. Rao, Y.-M. Tzeng C. Sridhar, J. Mol. Catal. A: Chem. 260 (2006) 179-180. https://doi.org/10.1016/j.molcata.2006.07.024

A. M. Zonouz S. B. Hosseini, Synth. Commun. 38 (2008) 290-296. https://doi.org/10.1080/ 00397910701750003

E. Rafiee, S. Eavani, S. Rashidzadeh M. Joshaghani, Inorg. Chim. Acta 362 (2009) 3555-3562. https://doi.org/10.1016/j.ica.2009.03.049

A. Hantzsch, Ber. Dtsch. Chem. Ges. 14 (1881) 1637-1638. https://doi.org/10.1002/cber.18810140214

D. Elhamifar, H. Khanmohammadi D. Elhamifar, RSC Advances 7 (2017) 54789-54796. https://doi.org/ 10.1039/c7ra10758g

S. Baluja R. Talaviya, Int. J. Pharm., Chem. Biol. Sci. 5 (2015).

E. F. V. Scriven, Pyridines: From Lab to Production, Elsevier Science, 2013.

M. Filipan-Litvić, M. Litvić, I. Cepanec V. Vinković, Molecules 12 (2007) 2546-2558. https://doi.org/ 10.3390/12112546

P. A. Hopes, A. J. Parker I. Patel, Org. Process Res. Dev. 10 (2006) 808-813. https://doi.org/10.1021/ op060057r

P. F. Siril, H. E. Cross D. R. Brown, J. Mol. Catal. A: Chem. 279 (2008) 63-68. https://doi.org/10.1016/ j.molcata.2007.10.001

E. K. Ekinci, G. Gündüz N. Oktar, Int. J. Chem. React. Eng. 14 (2016) 309-314. https://doi.org/10.1515/ ijcre-2015-0012

N. I. Guzman Barrera, C. Bories, J. Peydecastaing, C. Sablayrolles, E. Vedrenne, C. Vaca-Garcia S. Thiebaud-Roux, Green Sustain. Chem. 8 (2018) 221-246. https://doi.org/10.4236/gsc.2018.83016

Published

31-12-2022

Issue

Section

Full Articles

How to Cite

Amberlyst-15, an efficient heterogeneous catalyst for the 1,4-dihydropyridine synthesis. (2022). Vietnam Journal of Catalysis and Adsorption, 11(4), 86-91. https://doi.org/10.51316/jca.2022.075

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 189

You may also start an advanced similarity search for this article.