Synthesis of diphenyl sulfide from iodobenzene and thiophenol using Metal-Organic Framework Cu2(NDC)2(DABCO) as an efficient heterogeneous catalyst
DOI:
https://doi.org/10.51316/jca.2020.072Keywords:
C-S coupling, iodobenzene, LiO-t-Bu, Cu2(NDC)2DABCO, thiophenolAbstract
A metal-organic framework Cu2(NDC)2(DABCO) was synthesized from copper nitrate trihydrate, 2,6-Napthalenedicarboxylic acid (H2NDC), and 1,4-diazabicyclo[2.2.2]octane (DABCO) by solvothermal method. Its physicochemical properties were confirmed by several techniques such as X-ray powder diffraction (PXRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Cu2(NDC)2(DABCO) appeared as well-shaped crystals. To get diphenyl sulfide as desired product from the C-S cross coupling reaction of iodobenzene and thiophenol, the Cu2(NDC)2(DABCO) was used as heterogeneous catalyst in the presence of LiO-tBu as base. The results showed that the transformation could proceed with more than 93% reaction conversion being obtained after 6 h at 120 oC when using 5 mol% Cu2(NDC)2(DABCO) catalyst in the presence of LiO-tBu. The solid catalyst could be recovered and reused five times without a significant degradation in catalytic activity. The coupling reaction could only proceed to achieve major product in the presence of the Cu2(NDC)2(DABCO catalyst.
Downloads
References
G. De Martino, M. C. Edler, G. La Regina, A. Coluccia, M. C. Barbera, D. Barrow, R. I. Nicholson, G. Chiosis, A. Brancale, E. Hamel, M. Artico, R. Silvestri, Journal of .Medicinal Chemistry 49 (2006) 947 – 954. https://doi.org/10.1021/jm050809s
J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chemical Reviews 102 (2002) 1359-1470. https://doi.org/10.1021/cr000664r
A. Van Bierbeek, M. Gingras, Tetrahedron Letter 39 (1998) 6283 – 6286. https://doi.org/10.1016/S0040-4039(98)01327-6
K. Masanori, O. Toshimi, T. Masahiro, S. Hiroshi, M. Toshihiko, Bulletin of the Chemical Society of Japan 58 (1985) 3657-3658. https://doi.org/10.1246/bcsj.58.3657
C.-F. Lee, Y.-L. Liu, S. S. Badsara, Chemistry an Asian Journal 9(2014) 706-722. http://doi.org/10.1002/asia.201301500
A. Correa, M. Carril, C. Bolm, Angewandte International Edition Chemie 47 (2008) 2880-2883. https://doi.org/10.1002/anie.200705668
Y.-C. Wong, T. T. Jayanth, C. –H. Cheng, Organic Letters 8(2006) 5613-5616. https://doi.org/10.1021/ol062344l
Y. Zhang, K. C. Ngeow, J. Y. Ying, Organic Letters 9(2007) 3495-3498. https://doi.org/10.1021/ol071248x.
A. Sujatha, A. M. Thomas, A. P Thankachan, G. Anilkumar, 2015 (2014) 1-28. https://doi.org/10.3998/ark.5550190.p008.779
L. Rout, T. K. Sen, T. Punniyamurthy, , Angewandte International Edition Chemie 46(2007) 5583-5586. https://doi.org/10.1002/anie.200701282
M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'keeffe and O. M. Yaghi, Accounts of Chemical Research 34 (2001) 319-330. https://doi.org/10.1021/ar000034b
A. M. Shultz, O. K. Farha, J. T. Hupp and S. T. Nguyen, Journal of the American Chemical Society 131 (2009) 4204-4205. https://doi.org/10.1021/ja900203f
L. Zhu, X. Q. Liu, H. L. Jiang, and L. B. Sun, Chemical Reviews 117 (2017) 8129-8176. https://doi.org/10.1021/acs.chemrev.7b00091
A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Chemical Society Reviews 44 (2015) 1922-1947. https://doi.org/10.1039/C4CS00254G
R. Heck, O. Shekhah, O. Zybaylo, P. G. Weidler, F. Friedrich, R. Maul, W. Wenzel, C. Wӧll, Polymers. 3 (2011) 1565-1574. https://doi.org/10.3390/polym3031565
I. Luz, F.X. Llabrés i Xamena, A. Corma, Journal of Catalysis 276 (2010) 134-140. https://doi.org/10.1016/j.jcat.2010.09.010
N. T. S. Phan, C. W. Jones, Journal of Molecular Catalysis A: Chemical 253 (2006) 123-131. https://doi.org/10.1016/j.molcata.2006.03.019