The catalytic performances of α-MnO2 and δ-MnO2 catalysts synthesized from KMnO4 and ethanol for total oxidation of isopropanol
DOI:
https://doi.org/10.51316/jca.2020.009Keywords:
α-MnO2, cryptomelane, VOCs, isopropanolAbstract
In this study, the catalytic activities of total oxidation of isopropanol (IPA) over MnO2-based catalysts (α-MnO2 and δ-MnO2) were studied and compared. These catalysts were synthesized by an oxidation/reduction route between ethanol and KMnO4 by using dropwise method. Their morphological, structural properties, specific surface area, pore distribution and reducibility were characterized by SEM, XRD, FTIR, N2 isothermal adsorption-desorption, and hydrogen temperature-programmed reduction (H2-TPR). As a result, IPA was significantly oxidized to acetone at low temperature (<130 °C) and subsequently to CO2 at higher temperature. α-MnO2 was demonstrated as a better catalyst for total oxidation of IPA compared with δ-MnO2. Over 205 °C, IPA was completely oxidized to CO2. Additionally, the high reducibility of δ-MnO2 was found to be correlated with higher activity of IPA toward acetone at low temperature.
Downloads
References
E. Cetin, M. Odabasi, R. Seyfioglu, Sci. Total Environ. 312 (2003) 103–112. https://doi.org/10.1016/S0048-9697(03)00197-9
K. Tzortzatou, E. Grigoropoulou, J. Environ. Sci. Heal. Part A 45 (2010) 534–541. https://doi.org/10.1080/10934521003595027
X. Tang, P.K. Misztal, W.W. Nazaroff, A.H. Goldstein, Environ. Sci. Technol. 50 (2016) 12686–12694. https://doi.org/10.1021/acs.est.6b04415
Spengler, J. D., Samet, J. M., & McCarthy, J. F. (2001). Indoor air quality handbook (pp. 9-1). New York: McGraw-Hill.
Wallace, L. A. (2001). Assessing human exposure to volatile organic compounds. Indoor Air Quality Handbook. McGraw-Hill.
C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Chem. Rev. 119 (2019) 4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408
M. Florea, M. Alifanti, V.I. Parvulescu, D. Mihaila-Tarabasanu, L. Diamandescu, M. Feder, C. Negrila, L. Frunza, Catal. Today 141 (2009) 361–366. https://doi.org/10.1016/j.cattod.2019.05.069
V. P. Santos, M. F. R. Pereira, J. J. M. Orfao and J. L. Figueiredo, Appl. Catal., B, 99 (2010) 353-363 https://doi.org/10.1016/j.apcatb.2010.07.007.
J. Wang, J. Li, P. Zhang, G. Zhang, Appl. Catal. B Environ. 224 (2018) 863–870. https://doi.org/10.1016/j.apcatb.2017.11.019
X. Chen, Y.-F. Shen, S.L. Suib, C.. O’Young, J. Catal. 197 (2001) 292–302. https://doi.org/10.1006/jcat.2000.3063
H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A
N. Lucas, L. Gurrala, S.B. Halligudi, Mol. Catal. 490 (2020) 110966. https://doi.org/10.1016/j.mcat.2020.110966
F. Shi, F. Wang, H. Dai, J. Dai, J. Deng, Y. Liu, G. Bai, K. Ji, C.T. Au, Appl. Catal. A Gen. 433–434 (2012) 206–213. https://doi.org/10.1016/j.apcata.2012.05.016
W. Yang, Z. Su, Z. Xu, W. Yang, Y. Peng, J. Li, Appl. Catal. B Environ. 260 (2020) 118150. https://doi.org/10.1016/j.apcatb.2019.118150
D.A. Kitchaev, S.T. Dacek, W. Sun, G. Ceder, J. Am. Chem. Soc. 139 (2017) 2672–2681. https://doi.org/10.1021/jacs.6b11301
B.-R. Chen, W. Sun, D.A. Kitchaev, J.S. Mangum, V. Thampy, L.M. Garten, D.S. Ginley, B.P. Gorman, K.H. Stone, G. Ceder, M.F. Toney, L.T. Schelhas, Nat. Commun. 9 (2018) 2553. https://doi.org/10.1038/s41467-018-04917-y