The catalytic performances of α-MnO2 and δ-MnO2 catalysts synthesized from KMnO4 and ethanol for total oxidation of isopropanol

Authors

  • Nguyen Dinh Minh Tuan The University of Danang Author
  • Phan Thi Hang Nga The University of Danang Author

DOI:

https://doi.org/10.51316/jca.2020.009

Keywords:

α-MnO2, cryptomelane, VOCs, isopropanol

Abstract

In this study, the catalytic activities of total oxidation of isopropanol (IPA) over MnO2-based catalysts (α-MnO2 and δ-MnO2) were studied and compared. These catalysts were synthesized by an oxidation/reduction route between ethanol and KMnO4 by using dropwise method. Their morphological, structural properties, specific surface area, pore distribution and reducibility were characterized by SEM, XRD, FTIR, N2 isothermal adsorption-desorption, and hydrogen temperature-programmed reduction (H2-TPR). As a result, IPA was significantly oxidized to acetone at low temperature (<130 °C) and subsequently to CO2 at higher temperature. α-MnO2 was demonstrated as a better catalyst for total oxidation of IPA compared with δ-MnO2. Over 205 °C, IPA was completely oxidized to CO2. Additionally, the high reducibility of δ-MnO2 was found to be correlated with higher activity of IPA toward acetone at low temperature.

Downloads

Download data is not yet available.

References

E. Cetin, M. Odabasi, R. Seyfioglu, Sci. Total Environ. 312 (2003) 103–112. https://doi.org/10.1016/S0048-9697(03)00197-9

K. Tzortzatou, E. Grigoropoulou, J. Environ. Sci. Heal. Part A 45 (2010) 534–541. https://doi.org/10.1080/10934521003595027

X. Tang, P.K. Misztal, W.W. Nazaroff, A.H. Goldstein, Environ. Sci. Technol. 50 (2016) 12686–12694. https://doi.org/10.1021/acs.est.6b04415

Spengler, J. D., Samet, J. M., & McCarthy, J. F. (2001). Indoor air quality handbook (pp. 9-1). New York: McGraw-Hill.

Wallace, L. A. (2001). Assessing human exposure to volatile organic compounds. Indoor Air Quality Handbook. McGraw-Hill.

C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Chem. Rev. 119 (2019) 4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408

M. Florea, M. Alifanti, V.I. Parvulescu, D. Mihaila-Tarabasanu, L. Diamandescu, M. Feder, C. Negrila, L. Frunza, Catal. Today 141 (2009) 361–366. https://doi.org/10.1016/j.cattod.2019.05.069

V. P. Santos, M. F. R. Pereira, J. J. M. Orfao and J. L. Figueiredo, Appl. Catal., B, 99 (2010) 353-363 https://doi.org/10.1016/j.apcatb.2010.07.007.

J. Wang, J. Li, P. Zhang, G. Zhang, Appl. Catal. B Environ. 224 (2018) 863–870. https://doi.org/10.1016/j.apcatb.2017.11.019

X. Chen, Y.-F. Shen, S.L. Suib, C.. O’Young, J. Catal. 197 (2001) 292–302. https://doi.org/10.1006/jcat.2000.3063

H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A

N. Lucas, L. Gurrala, S.B. Halligudi, Mol. Catal. 490 (2020) 110966. https://doi.org/10.1016/j.mcat.2020.110966

F. Shi, F. Wang, H. Dai, J. Dai, J. Deng, Y. Liu, G. Bai, K. Ji, C.T. Au, Appl. Catal. A Gen. 433–434 (2012) 206–213. https://doi.org/10.1016/j.apcata.2012.05.016

W. Yang, Z. Su, Z. Xu, W. Yang, Y. Peng, J. Li, Appl. Catal. B Environ. 260 (2020) 118150. https://doi.org/10.1016/j.apcatb.2019.118150

D.A. Kitchaev, S.T. Dacek, W. Sun, G. Ceder, J. Am. Chem. Soc. 139 (2017) 2672–2681. https://doi.org/10.1021/jacs.6b11301

B.-R. Chen, W. Sun, D.A. Kitchaev, J.S. Mangum, V. Thampy, L.M. Garten, D.S. Ginley, B.P. Gorman, K.H. Stone, G. Ceder, M.F. Toney, L.T. Schelhas, Nat. Commun. 9 (2018) 2553. https://doi.org/10.1038/s41467-018-04917-y

Published

30-04-2020

Issue

Section

Full Articles

How to Cite

The catalytic performances of α-MnO2 and δ-MnO2 catalysts synthesized from KMnO4 and ethanol for total oxidation of isopropanol. (2020). Vietnam Journal of Catalysis and Adsorption, 9(1), 53-59. https://doi.org/10.51316/jca.2020.009

Share

Similar Articles

You may also start an advanced similarity search for this article.