Determination of the potential byproduct in the toluene oxidation process by CuMnOx catalyst on cordierite substrate

Authors

  • Tran Thị Thu Hien School of Environmental Science and Technology, Ha Noi University of Science and Technology, 01 Dai Co Viet, Ha Noi, Viet Nam | Faculty of Natural Sciences , Quy Nhon University, 170 An Duong Vuong, Quy Nhon City, Binh Dinh, Viet Nam
  • Vu Duc Hiep School of Chemical Engineering, Ha Noi University of Science and Technology, 01 Dai Co Viet, Ha Noi, Viet Nam
  • Nguyen Van Chuc School of Chemical Engineering, Ha Noi University of Science and Technology, 01 Dai Co Viet, Ha Noi, Viet Nam
  • Khong Manh Hung School of Chemical Engineering, Ha Noi University of Science and Technology, 01 Dai Co Viet, Ha Noi, Viet Nam
  • Ly Bich Thuy School of Environmental Science and Technology, Hanoi University of Science and Technology
  • Le Minh Thang School of Chemical Engineering, Ha Noi University of Science and Technology, 01 Dai Co Viet, Ha Noi, Viet Nam

DOI:

https://doi.org/10.51316/jca.2022.041

Keywords:

CuMnOx, toluene, impregnation method, by-products

Abstract

Cordierite is the substrate that posseses a low thermal expansion coefficient, good thermal shock resistance, excellent mechanical properties, and chemical resistance. Thus, cordierite is widely used as substrate for catalysts in high-temperature applications like gaseous treatment. CuMnOx/cordierite catalyst for the complete oxidation of toluene was prepared by the impregnation method and characterized by XRD, BET, IR techniques. This work evaluated the catalytic activity of the prepared catalyst at the temperature range from 150oC to 350oC. It was found that CuMnOx/cordierite catalyst completely converted toluene to CO2 at 350oC. In addition, the mechanism of the toluene oxidation process using CuMnOx/cordierite catalyst was also determined via the indentification of the presentation of the by-products by GC/MS technique at various reaction temperature of 200oC, 250oC, and 350oC. The results showed that the reaction  over the CuMnOx/cordierite catalyst followed the same mechanism as proposed by Lars and Andersson.  The intermediate products of the oxidation process at 200oC, 250oC, and 350oC were benzyl alcohol, benzaldehyde, benzoic acid, benzene, phenol, 1.4-hydroquinone, 1,4- benzoquinone, and maleic anhydride.

Downloads

Download data is not yet available.

References

M. S. Kamal, S. A. Razzak, M. M. Hossain, Atmospheric Environment 140 (2016) 117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031

C. Lahousse, A. Bernier, E. Gaigneaux, P. Ruiz P, P. Grange, B. Delmon, Proceedings of the 3rd World Congress on Oxidation Catalysis 1997 777–785. http://doi.org/10.1016/s0167-2991(97)81040-3

J. Luo., Q. Zhang, A. Huang, S. L. Suib, Microporous and Mesoporous Materials, 35 (2000), 209–217. http://doi.org/10.1016/s1387-1811(99)00221-8.

F. N. Aguero, A. Scian, B. P. Barbero, L. E. Cadús., Catalysis Today 133 (2008) 493–501.

http://doi.org/10.1016/j.cattod.2007.11.044

H. Einaga, S. Yamamoto, N. Maeda, Y. Teraoka, Catalysis Today, 242 (2015) 287–293.

http://doi.org/10.1016/j.cattod.2014.05.018

Q. Sun, L. Li, H. Yan, X. Hong, K.S. Hui, Z. Pan, Chemical Engineering Journal 242 (2014) 348–356. http://doi.org/10.1016/j.cej.2013.12.097

L.Naleki, M. Haghshenas Frad, M. Khoshnoodi, A. A. Mirzaei, G. J. Hutching, S. H. Taylor, Iranian Journal of Chemical Engineering 1 (2004) 11 -18.

S. Behar, P. Gonzalez, P. Agulhon, F. Quignard, D. Swierczy ´nski, Catalysis Today 189 (2012) 35–41. https://doi.org/10.1016/j.cattod.2012.04.004

B. D. Napruszewska, A. Michalik, A. Walczyk, D. Duraczy ´nska, R. Dula, W. Rojek, L. Lity ´nska-Dobrzy ´nska, K. Bahranowski, E. M. Serwicka, Materials 11 (2018). https://doi.org/10.3390/ma11081365

T. J. Clarke, S. A. Kondrat, S. H. Taylor, Catalysis Today 258 (2015) 610-615.

M. R. Morales, B. P. Barbero, L. E. Cadús, Applied Catalysis B: Environmental 67 (2006) 229–236. http://doi.org/10.1016/j.apcatb.2006.05.006.

N. E. Ntainjua, S. H. Taylor, Topics in Catalysis, 52 (2009) 528–541. https://doi.org/10.1007/s11244-009-9180-x.

H.C. Genuino, S. Dharmarathna, E.C. Njagi, M.C. Mei, S.L. Suib, The Journal of Physical Chemistry C 116 (2012) 12066-12078. https://doi.org/10.1021/jp301342f

R. G. Akay, A. B. Yurtcan, Direct Liquid Fuel Cells: Fundamentals, Advances and Future, Elsevier 2020 https://doi.org/10.1016/C2018-0-04168-7.

G. Allen, J.C. Bevington, Comprehensive polymer science and supplements, Elsevier, 1996, https://doi.org/10.1016/B978-0-08-096701-1.00181-6.

T. Tsoncheva, G. Issa, I. Genova, M. Dimitrov, Journal of Porous Materials 20 (2013) 1361–1369. https://doi.org/10.1007/s10934-013-9722-2.

D. Fang, J. Xie, D. Mei, Y. Zhang, F. He, X. Liu, Y. Li, RSC Advances 4 (2014).

https://doi.org/10.1039/c4ra02824d

N. R. E. Radwan, G. A. El-Shobaky, Y. M. Fahmy, Applied Catalysis A: General 274 (2004) 87–99. https://doi.org/10.1016/j.apcata.2004.05.032.

M. Rundans, G. Sedmale, I. Sperberga, I. Pundiene, Advances in Science and Technology 89 (2014) 94–99. http://doi.org/10.4028/www.scientific.net/as

T. M. P. Phạm, Q. M. Nguyễn, T.T. Nguyễn, I. Van Driessche, M.T. Lê, Investigating the different methods of cordierite's preparation to apply in three-way catalysts manufacture, Materials 50(2012), 135 – 138. https://doi.org/10.3390/ma7096237

T. T. H. Tran, B. T. Ly, T. M. P. Pham, M. T. Le, Vietnam Journal of Catalysis and Adsorption, 10 (2021). https://doi.org/10.51316/jca.2021.068

D. MubarakAli, J. Arunkumar, P.Pooja, G. Subramanian, N. Thajuddin, N. S. Alharbi, Saudi Pharmaceutical Journal 23 (2015) 421–428. http://doi.org/10.1016/j.jsps.2014.11.007.

D. Zhu, L. Wang, W.Yu, H.Xie, Scientific reporters 8(2018). https://doi.org/10.1038/s41598-018-23174-z

N. Benreguia., A. Barnabé, M. Trari, Materials Science in Semiconductor Processing 56 (2016) 14–19. http://doi.org/ 10.1016/j.mssp.2016.07.012.

L. Wang, M. Arif , G. Duan, S. Chen, X. Liu, Journal of Power Sources 355 (2017) 53–61.

http://doi.org/10.1016/j.jpowsour.2017.04.05.

L. Cai, Z. Hu, P. Branton, W. Li W, Chinese Journal of Catalysis 32 (2014) 159–167.

http://doi.org/10.1016/s1872-2067(12)60699-8.

L. Kang, M. Zhang, Z. H. Liu, K. Ooi, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67 (2007) 864–869. http://doi.org/10.1016/j.saa.2006.09.001.

S. Dey, G. C. Dhal, D. Mohan, R. Prasad, Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2017) 393-40. http://doi.org/10.9767/bcrec.12.3.882.393-407.

Z. Tian., W. J. Pitz, R. Fournet, P. A. Glaud, F. Battin-Leclerc, Proceedings of the Combustion Institute 33 (2011) 233–241. http://doi.org/10.1016/j.proci.2010.06.063

Y. Ji, J. Zhao, H. Terazono, K. Misawa, N. P. Levitt, Y. Li, … R. Zhang, Proceedings of the National Academy of Sciences 114 (2017), 8169–8174. http://doi.org/10.1073/pnas.1705463114

J. A. A. Hoorn, P. L. Alsters, G. F. Versteeg, International Journal of Chemical Reactor Engineering 3 (2005). http://doi:org/10.2202/1542-6580.1196

R. Wu, S. Pan, Y. Li, L. Wang (2014), The Journal of Physical Chemistry A 118 (2014) 4533–4547. http://doi.org/10.1021/jp500077f

S. L. T. Andersson, Journal of Chromatographic Science 23 (1985) 17–21. http://doi:org/10.1093/chromsci/23.1.17

G. Xiao, W. Xu, R. Wu, M. Ni, C. Du, X. Gao, Z. Y. Luo, K. Cen, Plasma Chemistry and Plasma Processing 34 (2014) 1033–1065. http://doi:org/ 10.1007/s11090-014-9562-0

X. Li, J. Xu, F. Wang, J. Gao, L. Zhou., G. Yang, Catalysis Letters 108 (2006) 137–140. https://doi.org/10.1007/s10562-006-0034-x

Published

30-10-2022

Issue

Section

Full Articles

How to Cite

Determination of the potential byproduct in the toluene oxidation process by CuMnOx catalyst on cordierite substrate. (2022). Vietnam Journal of Catalysis and Adsorption, 11(3), 1-7. https://doi.org/10.51316/jca.2022.041

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 331

You may also start an advanced similarity search for this article.