Rh-supported ionic-liquid catalysts on TiO2 for the conversion of Ethylene to propanol

Authors

  • Vu Tung Lam School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam
  • Trinh Ba Hung School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam
  • Le Minh Thang School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam

DOI:

https://doi.org/10.51316/jca.2022.058

Keywords:

Ionic liquid, TiO2 support, supported ionic liquid phase catalyst, hydroformylation

Abstract

Rhodium catalyst systems for hydroformylation has been researched widely in the literature. Using ionic liquid for rhodium-supported catalyst facilitates this reaction. In this work, TiO2 support was first time used. From the FT-IR, EPR, and surface area analysis, the components of supported ionic liquid phase can be seen after the impregnation of ionic liquid into the support’s porous structure. The main product for the ethylene conversion is propan-2-ol, as a subsequent hydrogenation product after hydroformylation. Pressure and temperature difference are evaluated to understand the influence on selectivity and product formation.

Downloads

Download data is not yet available.

References

G. Jenner, Applied homogeneous catalysis with organometallic compounds 153 1–2 (1997) 254–255. https://doi.org/10.1016/s0926-860x(97)80116-0

A. M. Trzeciak, Compr. Inorg. Chem. II (Second Ed. From Elem. to Appl. 6 (2013) 25–46.

https://doi.org/10.1016/B978-0-08-097774-4.00602-1

B. Zhang, D. Peña Fuentes, and A. Börner 8 1 (2022). https://doi.org/10.1007/s40828-021-00154-x.

J. A. Osborn, G. Wilkinson, and J. J. Mrowca, Inorg. Synth. 10 (2007) 67–71. https://doi.org/10.1002/9780470132418.ch12

C. P. Mehnert, R. A. Cook, N. C. Dispenziere, and M. Afeworki, J. Am. Chem. Soc. 124 44 (2002) 12932–12933. https://doi.org/10.1021/ja0279242

B. M. Trost and S. L. Schreiber, Comprehensive Organic Sythesis Vol 1. 1993.

J. M. Marinkovic, A. Riisager, R. Franke, P. Wasserscheid, and M. Haumann, Ind. Eng. Chem. Res. 58 7 (2019) 2409–2420. https://doi.org/10.1021/acs.iecr.8b04010

M. Schörner, P. Wolf, and M. Haumann, Green Chem. Eng. 2 4 (2021) 339–341. https://doi.org/10.1016/J.GCE.2021.07.004

R. S. Kalb, Toward Industrialization of Ionic Liquids. (2020). https://doi.org/10.1007/978-3-030-35245-5_11

C. Xinlan, L. Peng, Z. Lei, P. Hong, and Z. Lun 3 1 (1998) 86–91.

H. N. T. Ha, D. T. Duc, T. V. Dao, M. T. Le, A. Riisager, and R. Fehrmann Catal. Commun. 25 (2012) 136–141. https://doi.org/10.1016/j.catcom.2012.01.018

R. Ashiri, Vib. Spectrosc. 66 (2013) 24–29. https://doi.org/10.1016/j.vibspec.2013.02.001

D. Menglet et al., J. Am. Chem. Soc. 120 9 (1998) 2086–2089. https://doi.org/10.1021/ja973164x

V. I. Zapirtan, B. L. Mojet, J. G. Van Ommen, J. Spitzer, and L. Lefferts, Catal. Letters 101 1–2 (2005) 43–47. https://doi.org/10.1007/s10562-004-3747-8

N. Navidi, J. W. Thybaut, and G. B. Marin, CHISA 2012 - 20th Int. Congr. Chem. Process Eng. PRES 2012 - 15th Conf. PRES, p., 2012.

Published

30-10-2022

Issue

Section

Full Articles

How to Cite

Rh-supported ionic-liquid catalysts on TiO2 for the conversion of Ethylene to propanol. (2022). Vietnam Journal of Catalysis and Adsorption, 11(3), 102-107. https://doi.org/10.51316/jca.2022.058

Share

Similar Articles

1-10 of 240

You may also start an advanced similarity search for this article.