Catalytic activities for the complete oxidation of toluene over MnO2, Co3O4 and NiO catalysts
DOI:
https://doi.org/10.51316/jca.2020.014Keywords:
MnO2, Co3O4, NiO, VOCs, tolueneAbstract
In this study, the catalytic performances of the complete oxidation of toluene over different transition metal oxides including MnO2, Co3O4 and NiO were investigated. These oxides were synthesized by hydrothermal method, followed by annealing. The catalysts were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen isotherm adsorption-desorption before being evaluated their catalytic activity for the total oxidation of toluene in air. As a result, MnO2 was illustrated as the best catalyst having largest surface area and lowest activation energy, followed by Co3O4 and NiO.
Downloads
References
H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A
J. Li, H. Liu, Y. Deng, G. Liu, Y. Chen, J. Yang, Nanotechnol. Rev. 5 (2016), 147-181. https://doi.org/10.1515/ntrev-2015-0051
C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Chem. Rev. 119 (2019) 4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408
X. Tang, P.K. Misztal, W.W. Nazaroff, A.H. Goldstein, Environ. Sci. Technol. 50 (2016) 12686–12694. https://doi.org/10.1021/acs.est.6b04415
E. Cetin, M. Odabasi, R. Seyfioglu, Sci. Total Environ. 312 (2003) 103–112. https://doi.org/10.1016/S0048-9697(03)00197-9
K. Tzortzatou, E. Grigoropoulou, J. Environ. Sci. Heal. Part A 45 (2010) 534–541. https://doi.org/10.1080/10934521003595027
J.C. Ge, H.Y. Kim, S.K. Yoon, N.J. Choi, Fuel 218 (2018) 266–274. https://doi.org/10.1016/j.fuel.2018.01.045
Spengler, J. D., Samet, J. M., & McCarthy, J. F. (2001). Indoor air quality handbook (pp. 9-1). New York: McGraw-Hill.
Wallace, L. A. (2001). Assessing human exposure to volatile organic compounds. Indoor Air Quality Handbook. McGraw-Hill.
Y. Chang and J. G. McCarty, Catal. Today, 30 (1996) 163-170. https://doi.org/10.1016/0920-5861(95)00007-0
V. P. Santos, M. F. R. Pereira, J. J. M. Orfao and J. L. Figueiredo, Appl. Catal., B, 99 (2010) 353-363 https://doi.org/10.1016/j.apcatb.2010.07.007
B. Bai, H. Arandiyan, J. Li, Appl. Catal. B Environ. 142–143 (2013) 677–683. https://doi.org/10.1016/j.apcatb.2013.05.056
Y. Li, W. Shen, Chem. Soc. Rev. 43 (2014) 1543–1574. https://doi.org/10.1039/C3CS60296F
C.Y. Ma, Z. Mu, J.J. Li, Y.G. Jin, J. Cheng, G.Q. Lu, Z.P. Hao, S.Z. Qiao, J. Am. Chem. Soc. 132 (2010) 2608–2613. https://doi.org/10.1021/ja906274t
Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today 264 (2016) 270–278. https://doi.org/10.1016/j.cattod.2015.10.040
M.S. Kamal, S.A. Razzak, M.M. Hossain, Atmos. Environ. 140 (2016) 117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031
M. Dixit, G.N. Subbanna, P.V. Kamath, J. Mater. Chem. 6 (1996) 1429–1432. https://doi.org/10.1039/JM9960601429
W. He, X. Li, S. An, T. Li, Y. Zhang, J. Cui, Sci. Rep. 9 (2019) 10838. https://doi.org/10.1038/s41598-019-47120-9
F. Shi, F. Wang, H. Dai, J. Dai, J. Deng, Y. Liu, G. Bai, K. Ji, C.T. Au, Appl. Catal. A Gen. 433–434 (2012) 206–213. https://doi.org/10.1016/j.apcata.2012.05.016
C.T. Wong, A.Z. Abdullah, S. Bhatia, J. Hazard. Mater. 157 (2008) 480–489. https://doi.org/10.1016/j.jhazmat.2008.01.012
B. Miranda, E. Díaz, S. Ordóñez, A. Vega, F. V Díez, Chemosphere 66 (2007) 1706–15. https://doi.org/10.1016/j.chemosphere.2006.07.016
M. Florea, M. Alifanti, V.I. Parvulescu, D. Mihaila-Tarabasanu, L. Diamandescu, M. Feder, C. Negrila, L. Frunza, Catal. Today 141 (2009) 361–366. https://doi.org/10.1016/j.cattod.2008.05.005