Research on efficient synthetic method of β- and δ-carbolines using a Copper catalyst
DOI:
https://doi.org/10.51316/jca.2022.069Keywords:
C-N coupling, Ulmann reaction, β-carboline, δ-carboline, copper catalysisAbstract
Methodology for synthesizing of β- and δ-carboline via two steps reaction from 2,3-dibromopyridine and 3,4-dibromopyridine. The intermediate was prepared from the substrate with o-bromophenylboronic acid via site-selective Suzuki-Myaura reaction, then, the final products were obtained by double C-N coupling via the Ulmann reaction of the intermediate with the corresponding amine with copper catalyst.
Downloads
References
R. S. Alekseyev, A. V. Kurkin M. A. Yurovskaya, Chem. Heterocycl. Com. 45 (2009) 889-925. https://doi.org/10.1007/s10593-009-0373-9
R. Cao, W. Peng, Z. Wang A. Xu, Curr Med Chem 14 (2007) 479-500. https://doi.org/10.2174/092986707779940998
X.-P. Fu, S.-B. Tang, J.-Y. Yang, L.-L. Zhang, C.-C. Xia Y.-F. Ji, Eur. J. Org. Chem. 2019 (2019) 5974-5977. https://doi.org/10.1002/ejoc.201901035
F. Y. Miyake, K. Yakushijin D. A. Horne, Angew. Chem. Int. Ed. Engl. 44 (2005) 3280-3282. https://doi.org/10.1002/anie.200500055
O. B. Smirnova, T. V. Golovko V. G. Granik, Pharm. Chem. J. 44 (2011) 654-678. https://doi.org/10.1007/s11094-011-0540-z
Y. Im J. Y. Lee, Chem. Commun. (Camb) 49 (2013) 5948-5950. https://doi.org/10.1039/c3cc42131g
H. Wang, J. Zhu, B. Shen, B. Wei Z. Wang, Mol. Cryst. Liq. Cryst. 651 (2017) 133-141. https://doi.org/10.1080/15421406.2017.1338073
H. Zhang, R. H. Zhang, L. X. Wang, Y. J. Li, S. G. Liao M. Zhou, Asian J. Org. Chem. 10 (2021) 429-452. https://doi.org/10.1002/ajoc.202000690
E. V. Kumar, J. R. Etukala S. Y. Ablordeppey, Mini Rev. Med. Chem. 8 (2008) 538-554. https://doi.org/10.2174/138955708784534418
O. B. Smirnova, T. V. Golovko V. G. Granik, Pharm. Chem. J. 45 (2011) 389-400. https://doi.org/10.1007/s11094-011-0641-8
J. Dai, W. Dan, U. Schneider J. Wang, Eur. J. Med. Chem. 157 (2018) 622-656. https://doi.org/10.1016/j.ejmech.2018.08.027
D. Uredi, D. R. Motati E. B. Watkins, Org. Lett. 20 (2018) 6336-6339. https://doi.org/10.1021/acs.orglett.8b02441
S. Kumar, A. Singh, K. Kumar V. Kumar, Eur. J. Med. Chem. 142 (2017) 48-73. https://doi.org/10.1016/j.ejmech.2017.05.059
A. Paulo, E. T. Gomes, J. Steele, D. C. Warhurst P. J. Houghton, Planta Med. 66 (2000) 30-34. https://doi.org/10.1055/s-2000-11106
V. Snieckus D. P. J. S. Uccello, Synfacts 8 (2012) 0247-0247. https://doi.org/10.1055/s-0031-1290292
G. V. Subbaraju, J. Kavitha, D. Rajasekhar J. I. Jimenez, J. Nat. Prod. 67 (2004) 461-462. https://doi.org/10.1021/np030392y
S. W. Yang, M. Abdel-Kader, S. Malone, M. C. Werkhoven, J. H. Wisse, I. Bursuker, K. Neddermann, C. Fairchild, C. Raventos-Suarez, A. T. Menendez, K. Lane D. G. Kingston, J. Nat. Prod. 62 (1999) 976-983. https://doi.org/10.1021/np990035g
S. Gümüş, N. Aslan, N. N. Büyükadalı A. Gümüş, Tetrahedron: Asymmetry 28 (2017) 479-484. https://doi.org/10.1016/j.tetasy.2017.02.014
R. Yin, M. Zhang, C. Hao, W. Wang, P. Qiu, S. Wan, L. Zhang T. Jiang, Chem. Commun. (Camb) 49 (2013) 8516-8518. https://doi.org/10.1039/c3cc45203d
J. S. Moon, D. H. Ahn, S. W. Kim, S. Y. Lee, J. Y. Lee J. H. Kwon, RSC Adv. 8 (2018) 17025-17033. https://doi.org/10.1039/c8ra01761a
J. Tan, B. Wang, Z. Huang, X. Lv, W. Yi, S. Zhuang L. Wang, J. Mater. Chem. C 4 (2016) 5222-5230. https://doi.org/10.1039/c6tc01266c
R. S. Alekseev, A. V. Kurkin M. A. Yurovskaya, Chem. Heterocycl. Com. 48 (2012) 1235-1250. https://doi.org/10.1007/s10593-012-1127-7
R. Riggs D. Smith, in Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford, 2008, pp. 857-973. https://doi.org/10.1016/B978-008044992-0.01117-2
P. Ábrányi-Balogh, B. Volk, G. Keglevich M. Milen, Comput. Theor. Chem. 1097 (2016) 48-60. https://doi.org/10.1016/j.comptc.2016.10.008
S. Ramu, S. Srinath, A. A. kumar, B. Baskar, K. Ilango K. K. Balasubramanian, Mol. Catal. 468 (2019) 86-93. https://doi.org/10.1016/j.mcat.2019.02.018
S. Dhara, R. Singha, A. Ahmed, H. Mandal, M. Ghosh, Y. Nuree J. K. Ray, RSC Adv. 4 (2014) 45163-45167. https://doi.org/10.1039/c4ra08457h
T. T. Wang, D. Zhang W. W. Liao, Chem. Commun. (Camb) 54 (2018) 2048-2051. https://doi.org/10.1039/c8cc00040a
F. Nissen, V. Richard, C. Alayrac B. Witulski, Chem. Commun. (Camb) 47 (2011) 6656-6658. https://doi.org/10.1039/c1cc11298h
T. Q. Hung, D. T. Hieu, D. Van Tinh, H. N. Do, T. A. Nguyen Tien, D. Van Do, L. T. Son, N. H. Tran, N. Van Tuyen, V. M. Tan, P. Ehlers, T. T. Dang P. Langer, Tetrahedron 75 (2019) 130569. https://doi.org/10.1016/j.tet.2019.130569
O. A. Namjoshi, A. Gryboski, G. O. Fonseca, M. L. Van Linn, Z. J. Wang, J. R. Deschamps J. M. Cook, J. Org. Chem. 76 (2011) 4721-4727. https://doi.org/10.1021/jo200425m
G. Wang, X. You, Y. Gan Y. Liu, Org. Lett. 19 (2017) 110-113. https://doi.org/10.1021/acs.orglett.6b03385
H. Wen, W. Cao, Y. Liu, L. Wang, P. Chen Y. Tang, J. Org. Chem. 83 (2018) 13308-13324. https://doi.org/10.1021/acs.joc.8b02112
H. Detert J. Letessier, Synthesis 2012 (2011) 290-296. https://doi.org/10.1055/s-0031-1289652
J. Cao, Y. Xu, Y. Kong, Y. Cui, Z. Hu, G. Wang, Y. Deng G. Lai, Org. Lett. 14 (2012) 38-41. https://doi.org/10.1021/ol2027762
T. Q. Hung, T. T. Dang, J. Janke, A. Villinger P. Langer, Org. Biomol. Chem. 13 (2015) 1375-1386. https://doi.org/10.1039/c4ob02226b
P. Langer, T. T. Dang, T. Q. Hung, H. N. Do, N. M. Quan, B. Van Phuc, D. Van Tinh, N. Q. Tien, T. T. T. Nga V. T. Nguyen, Synlett 32 (2021) 611-615. https://doi.org/10.1055/s-0040-1706641