Behavior of n-hexene-1 in hydroformylation of olefin mixtures over rhodium supported porous metal-organic framework MOF-5
DOI:
https://doi.org/10.62239/jca.2024.064Keywords:
heterogeneous catalyst, hydroformylation, olefin, metal-organic frameworks, MOF-5Abstract
Metal organic framework MOF-5 was synthesized and used for the preparation of rhodium supported catalyst. Acetylacetonato(1,5-cyclooctadiene)rhodium(I) was used as catalyst precursor. The material was characterized by XRD, FTIR, TEM, AAS, and nitrogen adsorption. The catalytic properties of Rh@MOF-5 were investigated in the hydroformylation of olefins and olefin mixtures with different chain length to the corresponding aldehydes. High conversion and selectivity to n-aldehydes were achieved. Interestingly, shorter chain length molecule, n-hexene-1, shows different behavior in the hydroformylation of its mixtures, n-aldehyde is more favor in short reaction times. The obtained results indicate that rhodium active sites are highly dispersed inside the pores of the MOF-5 framework.
Downloads
References
G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 309 (2005) 2040-2042. https://doi.org/10.1126/science.1116275
S. Hermes, M.K. Schroter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R.W. Fischer, R.A. Fischer, Angew. Chem. Int. Ed. 44 (2005) 6237-6241. https://doi.org/10.1002/anie.200462515
O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423 (2003) 705-714. https://doi.org/10.1038/nature01650
T.V. Vu, H. Kosslick, A. Schulz, J. Harloff, E. Paetzold, J. Radnik, U. Kragl, G. Fulda, C. Janiak, N.D. Tuyen, Micropor. Mesopor. Mater. 177 (2013) 135-142. https://doi.org/10.1016/j.micromeso.2013.02.035
Y. Du, X. Jia, L. Zhong, Y. Jiao, Z. Zhang, Z. Wang, Y. Feng, M. Bilal, J. Cui, S. Jia, Coord. Chem. Rev. (2021) 214327. https://doi.org/10.1016/j.ccr.2021.214327
K.-G. Liu, Z. Sharifzadeh, F. Rouhani, M. Ghorbanloo, A. Morsali, Coord. Chem. Rev. 436 (2021) 213827. https://doi.org/10.1016/j.ccr.2021.213827
U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 16 (2006) 626-636. http://dx.doi.org/10.1039/B511962F
S. Hermes, F. Schroder, S. Amirjalayer, R. Schmid, R.A. Fischer, J. Mater. Chem. 16 (2006) 2464-2472. https://doi.org/10.1039/B603664c
H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Nature 402 (1999) 276-279. https://www.nature.com/articles/46248
P.C.J. Kamer, J.N.H. Reek, P.W.N.M. van Leeuwen, in: B. Heaton (Ed.), Mechanisms in Homogeneous Catalysis, A spectroscopic Approach, Wiley-VCH, Weinheim, 2005, p. 231. https://doi.org/10.1021/ja0597956
M. Marchetti, S. Paganelli, E. Viel, J. Mol. Catal. A Chem. 222 (2004) 143-151. https://doi.org/10.1016/j.molcata.2004.07.022
B. Cornils, W.A. Herrmann, M. Rasch, Angew. Chem. Int. Ed. 33 (1994) 2144-2163. https://doi.org/10.1002/anie.199421441
S. Bektesevic, A.M. Kleman, A.E. Marteel-Parrish, M.A. Abraham, J. Supercrit. Fluids 38 (2006) 232-241. http://dx.doi.org/10.1016/j.supflu.2006.01.019
A. Boerner, R. Franke, Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis, Wiley-VCH, 2016, p. 1.
C.D. Frohning, C.W. Kohlpaintner, Applied Homogeneous Catalytic with Organometallic Compounds 2ed., Wiley-VCH, 2003, p. 31.
H.-W. Bohnen, B. Cornils, Advances in Catalysis, Academic Press, 2002, pp. 1-64.
S.K. Sharma, P.A. Parikh, R.V. Jasra, J. Mol. Catal. A Chem. 316 (2010) 153-162. https://doi.org/10.1016/j.molcata.2009.10.014
M.S. Shaharun, B.K. Dutta, H. Mukhtar, S. Maitra, Chem. Eng. Sci. 65 (2010) 273-281. https://doi.org/10.1016/j.ces.2009.06.071
C.O. Oseghale, B.M. Mogudi, C.A. Akinnawo, R. Meijboom, Appl. Catal. A Gen. 602 (2020) 117735. https://doi.org/10.1016/j.apcata.2020.117735
J.A. Bae, K.-C. Song, J.-K. Jeon, Y.S. Ko, Y.-K. Park, J.-H. Yim, Micropor. Mesopor. Mater. 123 (2009) 289-297. https://doi.org/10.1016/j.micromeso.2009.04.015
T. Van Vu, H. Kosslick, A. Schulz, J. Harloff, E. Paetzold, M. Schneider, J. Radnik, N. Steinfeldt, G. Fulda, U. Kragl, Appl. Catal. A Gen. 468 (2013) 410-417. http://dx.doi.org/10.1016/j.apcata.2013.09.011
D. Gorbunov, M. Nenasheva, E. Naranov, A. Maximov, E. Rosenberg, E. Karakhanov, Appl. Catal. A Gen. 623 (2021) 118266. https://doi.org/10.1016/j.apcata.2021.118266
Y. Sun, J. Harloff, H. Kosslick, A. Schulz, C. Fischer, S. Bartling, M. Frank, A. Springer, Mol. Catal. (2021) 112005. https://doi.org/10.1016/j.mcat.2021.112005
S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, J. Am. Chem. Soc. 129 (2007) 14176-14177. https://doi.org/10.1021/ja076877g
D. Britt, D. Tranchemontagne, O.M. Yaghi, Proc. Natl. Acad. Sci. U.S.A 105 (2008) 11623-11627. https://doi.org/10.1073/pnas.0804900105
N.T.S. Phan, K.K.A. Le, T.D. Phan, Appl. Catal. A Gen. 382 (2010) 246-253. https://doi.org/10.1016/j.apcata.2010.04.053
R.S. Mikhail, E. Robens, Microstructure and thermal analysis of solid surfaces, John Wiley & Sons Limited, Chichester, 1983.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.