Multiwalled carbon nanotubes synthesis from methane using a stainless steel foils as a catalyst
DOI:
https://doi.org/10.51316/jca.2020.045Keywords:
CNTs, Stainless-steel foil, Pretreatment, Methane, CVDAbstract
In this study, a thin stainless-steel foil was used as a catalyst for carbon nanotubes (CNTs) using methane as a carbon source via the chemical vapor deposition (CVD) method. Our results revealed that pre-treatment step of the catalyst plays an important role in CNT formation. In our experiments, a catalyst pre-treatment temperature of 850 oC have been found to facilitate the surface roughness and provide more active nucleation sites for CNTs formation. Multiwalled CNTs with 6 layers, their diameters of 10 – 20 nm and their length of app. 300 nm were grown. This finding might lead to a process for improving the quality of MWCNTs grown on steel foil as catalyst.
Downloads
References
[ ] Jeon, H., J. Park, M. Shon, Journal of Industrial and Engineering Chemistry, 19 (2013), 849-853, https://doi.org/10.1016/j.jiec.2012.10.030
[ ] Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y.Ư. Mai, H. Huang, J.B. Goodenough J. Am. Chem. Soc. , 135 (2013) 16280-16283. https://doi.org/10.1021/ja408421n
[ ] U.S. Graphene Market size, by End-user, 2013 – 2024
[ ] J.A. Isaacs, A. Tanwani, M.L. Healy, L.J. Dahlben, Journal of Nanoparticle Research, 12 (2010), 551-562, https://doi.org/10.1007/s11051-009-9673-3
[ ] Barbara Pieters, JEC Magazine, 34 (2007), 1-7, http://www.jeccomposites.com/knowledge/international-composites-news/nanocomposites-automotive-research-activities-and-business.
[ ] A.F. Murphy, S. Kataria, B.A. Patel, Journal of Solid State Electrochemistry, 20 (2016), 785-792. https://doi.org/10.1007/s10008-015-3111-5
[ ] J.L. Killian, N.B. Zuckerman, D.L. Niemann, B.P. Ribaya, M. Rahman, R. Espinosa, M. Meyyappan, C.V. Nguyen, Journal of Applied Physics 103 (2008) 064312. https://doi.org/10.1063/1.2870931
[ ] W. Qian , T. Liu, Z. Wang, H. Yu, Z. Li, F. Wei, G. Lu, Carbon 41 (2003) 2487–2493. https://doi.org/10.1016/S0008-6223(03)00324-5
[ ] I.T. Han, B.K. Kim, H.J. Kim, M. Yang, Y. W. Jin, S. Jung, N. Lee, S. K. Kim, J. M. Kim, Chemical Physics Letters 400 (2004) 139–144. 10.1016/j.cplett.2004.10.123
[ ] A. Yahyazadeh, B. Khoshandam, Results in Physics 7 (2017), 3826-3837, https://doi.org/10.1016/j.rinp.2017.10.001.
[ ] X. Lepro, M. Lima, R.H. Baughman, Carbon 48 (2010), 3621-3627, https://doi.org/10.1016/j.carbon.2010.06.016
[ ] N.V. Chuc, N.D. Dung, P.N. Hong, L.D. Quang, P. H. Khoi, P.N. Minh, J. Korean Phy. Soc., 52 (2008) 1368-1371. https://doi.org/10.3938/jkps.52.1368
[ ] S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu, P. M. Ajayan, Nature nanotechnology, 1 (2006), 112-116, https://doi.org/10.1038/nnano.2006.56.
[ ] L. Yuan, K Saito, C. Pan, F.A. William, A.S. Gordon, Chemical physics letters, 340 (2001), 237-241. 10.1016/S0009-2614(01)00435-3
[ ] R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Advances in Physics, 60 (2011), 413-550. https://doi.org/10.1080/00018732.2011.582251
[ ] D.Y. Usachov, V.Y. Davydov, V.S. Levitskii, V.O. Shevelev, D. Marchenko, B.V. Senkovskiy, O.Y. Vilkov, A.G. Rybkin, L.V. Yashina, E.V. Chulkov, I. Y. Sklyadneva, R. Heid, K.P. Bohnen, C. Laubschat, D.V. Vyalikh, ACS Nano, 11 (2017), 6336-6345, https://doi.org/10.1021/acsnano.7b02686