Preparation and thermal conductivity of nanofluid-based coolanol 20 containing carbon nanotubes
DOI:
https://doi.org/10.51316/jca.2021.115Keywords:
Coolanol 20, carbon nanotubes, thermal conductivity, nanofluids, heat transferAbstract
In this paper, we present the obtained results in the fabrication and thermal properties of nanofluid-based Coolant 20 containing carbon nanotubes (CNTs). To improve dispersion efficiency, CNTs materials were functionalized with an -OH functional group by chemical methods. After the functionalization process, the CNTs-OH materials were dispersed into Coolant 20 based fluid by surfactant and the ultrasonic vibration method. The experimental results of size distribution spectrum and Zeta potential show that carbon nanotubes were dispersed uniformly and stably in the based fluid. The presence of CNTs has improved thermal conductivity of the nanofluid, with a concentration of 1,0 vol.% CNTs showing an increase in thermal conductivity of 65%. Nanofluid-based Coolant 20 containing carbon nanotubes helped to improve heat exchange efficiency for components and devices operating under special conditions, among other applications.
Downloads
References
X.Q. Wang, A.S. Mujumdar, Int. J. Ther. Sci., 46 (2007) 1–19 https://doi.org/10.1016/j.ijthermalsci.2006.06.010
M. Raja, R. Vijayan a, P. Dineshkumar b, M. Venkatesan., 64 (2016) 163–173. https://doi.org/10.1016/j.rser.2016.05.079
H.E. Patel, T. Sundararajan, S.K. Das. 12 (2010) 1015–1031. https://doi.org/10.1007/s11051-009-9658-2
A.K. Rasheed, M. Khalid, W. Rashmi, T.C.S.M. Gupta, A. Chan. 63 (2016) 346–362. https://doi.org/10.1016/j.rser.2016.04.072
E. Sadeghinezhad, M. Mehrali, R. Saidurc, M. Mehrali, S.T. Latibari, A.R. Akhiani, H.S.C. Metselaar, 111 (2016) 466–487. https://doi.org/10.1016/j.enconman.2016.01.004
A. Ghozatloo, M.S. Niasar, A. Rashidi. 42 (2013) 89-94. https://doi.org/10.1016/j.icheatmasstransfer.2012.12.007
P. V. Trinh, N. N. Anh, B. H. Thang, L. D. Quang, N. T. Hong, N. M. Hong, P. H. Khoi, P. N. Minh, P. N. Hong, 7 (2017) 318–326. https://doi.org/10.1039/C6RA25625B
S. Baskar, M. Chandrasekaran, T. Vinod Kumar, P. Vivek, L. Karikalan 41 3 (2020) 296-299. https://doi.org/10.1080/01430750.2018.1451381.
Cyril ReubenRaj, S.Suresh, Vivek Kumar Singh, R.R.Bhavsar, Midhun V. C, Sudharshan Vasudevan, V. Archita. 167 (2021) 107007 https://doi.org/10.1016/j.ijthermalsci.2021.107007
Tucson, Arizona. Fluid selection for space thermal control systems, ICES (2014) 13-17.
Bui Hung Thang, Pham Van Trinh, Le Dinh Quang, Nguyen Thi Huong, Phan Hong Khoi and Phan Ngoc Minh, 65 3 (2014) 312–316. https://doi.org/10.3938/jkps.65.312
Pham Van Trinh, Nguyen Ngoc Anh, Nguyen Tuan Hong, Phan Ngoc Hong, Phan Ngoc Minh, Bui Hung Thang, 269 (2018) 344–353. https://doi.org/10.1016/j.molliq.2018.08.071
Y.H. Li, W. Qu, J.C. Feng, Temperature Dependence of Thermal Conductivity of Nanofluids, Chinese Phys Lett, 25 (2008) 3319.