Multiwalled carbon nanotubes synthesis from methane using a stainless steel foils as a catalyst
DOI:
https://doi.org/10.51316/jca.2021.009Keywords:
Stainless-steel foil, Pretreatment, Methane, CVD, CNTsAbstract
In this study, a thin stainless-steel foil was used as a catalyst for carbon nanotubes (CNTs) using methane as a carbon source via the chemical vapor deposition (CVD) method. Our results revealed that pre-treatment step of the catalyst plays an important role in CNT formation. In our experiments, a catalyst pre-treatment temperature of 850 oC have been found to facilitate the surface roughness and provide more active nucleation sites for CNTs formation. Multiwalled CNTs with 6 layers, their diameters of 10 – 20 nm and their length of app. 300 nm were grown. This finding might lead to a process for improving the quality of MWCNTs grown on steel foil as catalyst.
Downloads
References
Jeon, H., J. Park, M. Shon, J. Indus. Eng. Chem., 19 (2013), 849-853 https://doi.org/10.1016/j.jiec.2012.10.030
Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y.Ư. Mai, H. Huang, J.B. Goodenough J. Am. Chem. Soc. , 135 (2013) 16280-16283. https://doi.org/10.1021/ja408421n
U.S. Graphene Market size, by End-user, 2013 – 2024
J.A. Isaacs, A. Tanwani, M.L. Healy, L.J. Dahlben, J. Nano. Res., 12 (2010) 551-562, https://doi.org/10.1007/s11051-009-9673-3
Barbara Pieters, JEC Magazine, 34 (2007) 1-7,
A.F. Murphy, S. Kataria, B.A. Patel, J. Solid State Electrochem., 20 (2016), 785-792. https://doi.org/10.1007/s10008-015-3111-5
J.L. Killian, N.B. Zuckerman, D.L. Niemann, B.P. Ribaya, M. Rahman, R. Espinosa, M. Meyyappan, C.V. Nguyen, J. Appl. Phys. 103 (2008) 064312. https://doi.org/10.1063/1.2870931
W. Qian , T. Liu, Z. Wang, H. Yu, Z. Li, F. Wei, G. Lu, Carbon 41 (2003) 2487–2493. https://doi.org/10.1016/S0008-6223(03)00324-5
I.T. Han, B.K. Kim, H.J. Kim, M. Yang, Y. W. Jin, S. Jung, N. Lee, S. K. Kim, J. M. Kim, Chem. Phys. Let. 400 (2004) 139–144. 10.1016/j.cplett.2004.10.123
A. Yahyazadeh, B. Khoshandam, Results Phys. 7 (2017), 3826-3837, https://doi.org/10.1016/j.rinp.2017.10.001.
X. Lepro, M. Lima, R.H. Baughman, Carbon 48 (2010), 3621-3627, https://doi.org/10.1016/j.carbon.2010.06.016
N.V. Chuc, N.D. Dung, P.N. Hong, L.D. Quang, P. H. Khoi, P.N. Minh, J. Korean Phy. Soc., 52 (2008) 1368-1371. https://doi.org/10.3938/jkps.52.1368
S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu, P. M. Ajayan, Nature nanotechnol., 1 (2006), 112-116, https://doi.org/10.1038/nnano.2006.56.
L. Yuan, K Saito, C. Pan, F.A. William, A.S. Gordon, Chem. phys. Let., 340 (2001), 237-241. 10.1016/S0009-2614(01)00435-3
R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Adv. Phys., 60 (2011), 413-550. https://doi.org/10.1080/00018732.2011.582251
D.Y. Usachov, V.Y. Davydov, V.S. Levitskii, V.O. Shevelev, D. Marchenko, B.V. Senkovskiy, O.Y. Vilkov, A.G. Rybkin, L.V. Yashina, E.V. Chulkov, I. Y. Sklyadneva, R. Heid, K.P. Bohnen, C. Laubschat, D.V. Vyalikh, ACS Nano, 11 (2017), 6336-6345 https://doi.org/10.1021/acsnano.7b02686