A comparative study on the photodegradation of methyl orange, methylene blue using Fe2O3, Mn2O3, and Fe2O3 – Mn2O3 nanomaterials
DOI:
https://doi.org/10.51316/jca.2022.051Keywords:
Nanoparticles, Fe2O3 – Mn2O3, photocatalyst Methyl Orange, Methyl BlueAbstract
In this study, photocatalysis was applied to degrade methyl orange (MO) and methylene blue (MB) pollutants using nanoparticles (i.e., Fe2O3, Mn2O3, Fe2O3 – Mn2O3). The results were shown that MB was relatively easier to decompose than MO. At the same initial concentration of 10 ppm, all nanomaterials need 120 min to degrade MB from 74.4%-96.5%, while after 180 min, MO is only degraded by 50%-95%. For both pollutants, the mixed nano-oxides of Fe2O3-Mn2O3 presented a superior treatment efficiency compared to the two single oxides (i.e., Fe2O3 and Mn2O3). The degradation efficiency was recorded with the order Fe2O3-Mn2O3> Fe2O3> Mn2O3. During photodecomposition, formed intermediates due to the incomplete reaction of pollutions and hydroxyl radical were investigated using the ions trap technique.
Downloads
References
K.H. Leong, S.L. Liu, L.C. Sim, P. Saravanan, M. Jang, S. Ibrahim, Appl. Surf. Sci. 358 (2015) 370-376. https://doi.org/10.1016/j.apsusc.2015.06.184
J. Henych, V. Štengl, M. Slušná, T.M. Grygar, P. Janoš, P. Kuráň, M. Štastný, Appl. Surf. Scic 344 (2015) 9-16. https://doi.org/10.1016/j.apsusc.2015.02.181
M. Mehdipour Ghazi, M. Ilbeigi, M. Jahangiri, Adv. Environ. Technol. 2(3) (2017) 143-151. https://doi.org/10.22104/AET.2017.427
J. Henych, P. Janoš, M. Kormunda, J. Tolasz, V. Štengl, Arab. J. Chemist. 12(8) (2019) 4258-4269. https://doi.org/10.1016/j.arabjc.2016.06.002
A.K. Dutta, S.K. Maji, B. Adhikary, Mater. Res. Bull. 49 (2014) 28-34. https://doi.org/10.1016/j.materresbull.2013.08.024
K. Chandiran, R.A. Murugesan, R. Balaji, N.G. Andrews, S. Pitchaimuthu, K.C.N. Raja, Mater. Res. Exp. 7(7) (2020) 074001. https://doi.org/10.1088/2053-1591/ab9fbd
Y. Ghaffari, N.K. Gupta, J. Bae, K.S. Kim, J. Mole. Liq. 315 (2020) 113691. https://doi.org/10.1016/j.molliq.2020.113691
V.N.M. Nguyen, N.N. Dao, N.C. Pham, T.D. Doan, T.H.C. Nguyen, Vietnam J. Catalys. Adsorp. 9(4) (2020) 8-12. https://doi.org/10.51316/jca.2020.062
V.N.M Nguyen, T.D. Doan, T.L. Duong, N.N. Dao, J. Analytic. Sci. Soc., 29(1) (2019) 147- 151.
V.N.M. Nguyen, N.N Dao, N.C. Pham, Q.T. Nguyen, V.H. Cao, Vietnam J. Chem. 55 (3e12) (2017).
S.R. Mirmasoomi, M.M. Ghazi, M. Galedari, Separat. Purificat. Technol. 175 (2017) 418-427. https://doi.org/10.1016/j.seppur.2016.11.021
L. Hinojosa-Reyes, J.L. Guzmán-Mar, M. Villanueva-Rodríguez, Photocatalyt. Semiconduc. (2015) 187-228. Springer, Cham. https://doi.org/10.1007/978-3-319-10999-2_6
C. Corot, D. Warlin, Wiley Interdisciplin. Rev. Nanomedic. Nanobiotechnol. 5(5) (2013) 411- 422. https://doi.org/10.1002/wnan.1225
V.K. Vu, H.S. Nguyen, A.T. Nguyen, T.H. Nguyen, Vietnam J. Sci. Technol. 49 (2011) 119 – 126.
N.V.N. Mai, D.T. Lim, N.Q. Bac, N.T.H. Chi, D.T. Dung, N.N. Pham, D.N. Nhiem, J. Chin. Chem. Soc. 67(2020) 242-245. https://doi.org/10.1002/jccs.201900033
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐVLTT.01/21-23