Photocatalytic Degradation of Alpha Cypermethrin Based on ZSM-5/TiO2 Hybrid Composites
DOI:
https://doi.org/10.51316/jca.2022.044Keywords:
alpha – cypermethrin, TiO2 nanoparticles, photocatalysis, ZSM-5Abstract
Zeolite Socony Mobil-5 (ZSM-5) was successfully synthesized by a hydrothermal method from the silicon dioxide (SiO2) precursor prepared from rice husk ash. Titanium dioxide (TiO2) nanoparticles were decorated on ZSM-5 substrate by a sol-gel method. ZSM-5/TiO2 materials were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), and Brunauer-Emmett-Teller (BET) surface area analysis. ZSM-5 was successfully synthesized in crystal structure with an average crystallite size of 3-5 mm. TiO2 nanoparticles with the size of 3-5 nm were distributed on the surface of ZSM-5. ZSM-5/TiO2 materials were used as a photocatalyst to remove alpha – cypermethrin, a kind of the pesticide residues. The results showed that the removal efficiency was 90% with the initial concentration of alpha - cypermethrin of 160 mg L-1. ZSM-5/TiO2 would be a very potential material for using as a photocatalyst for the treatment of persistent organic pollutants.
Downloads
References
L.C. Coteţ, A. Măicăneanu, C.I. Forţ, V. Danciu, Separation Science and Technology 48 (2013) 2649-2658. https://10.1080/01496395.2013.805782
T.-f. Liu, C. Sun, N. Ta, J. Hong, S.-g. Yang, C.-x. Chen, Journal of Environmental Sciences 19 (2007) 1235-1238. https://doi.org/10.1016/S1001-0742(07)60201-0
V.-H. Nguyen, S.M. Smith, K. Wantala, P. Kajitvichyanukul, Arabian Journal of Chemistry (2020). https://doi.org/10.1016/j.arabjc.2020.04.028
L. Ghimici, C.-E. Brunchi, A. Diaconu, Cellulose 23 (2016) 3837-3846. https://10.1007/s10570-016-1056-1
Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, Z. Li, Chemical Engineering Journal 337 (2018) 351-371. https://doi.org/10.1016/j.cej.2017.12.092
R. Katal, S. Masudy-Panah, M. Tanhaei, M.H.D.A. Farahani, H. Jiangyong, Chemical Engineering Journal 384 (2020) 123384. https://doi.org/10.1016/j.cej.2019.123384
J.M. Monteagudo, A. Durán, M.R. Martínez, I. San Martín, Chemical Engineering Journal 380 (2020) 122410. https://doi.org/10.1016/j.cej.2019.122410
K.K. Abbas, K.M. Shabeeb, A.A.A. Aljanabi, A.M.H.A. Al-Ghaban, Environmental Technology & Innovation 20 (2020) 101070. https://doi.org/10.1016/j.eti.2020.101070.
C.-T. Chang, J.-J. Wang, T. Ouyang, Q. Zhang, Y.-H. Jing, Materials Science and Engineering: B 196 (2015) 53-60. https://doi.org/10.1016/j.mseb.2014.12.025.
P. Bai, P. Wu, W. Xing, D. Liu, L. Zhao, Y. Wang, B. Xu, Z. Yan, X.S. Zhao, Journal of Materials Chemistry A 3 (2015) 18586-18597. https://10.1039/C5TA05350A
N. Rahimi, R. Karimzadeh, Applied Catalysis A: General 398 (2011) 1-17. https://doi.org/10.1016/j.apcata.2011.03.009
A. Javdani, J. Ahmadpour, F. Yaripour, Microporous and Mesoporous Materials 284 (2019) 443-458. https://doi.org/10.1016/j.micromeso.2019.04.063
K. Zhou, X.-Y. Hu, B.-Y. Chen, C.-C. Hsueh, Q. Zhang, J. Wang, Y.-J. Lin, C.-T. Chang, Applied Surface Science 383 (2016) 300-309. https://doi.org/10.1016/j.apsusc.2016.04.155.
X.-Y. Hu, K. Zhou, B.-Y. Chen, C.-T. Chang, Applied Surface Science 362 (2016) 329-334. https://doi.org/10.1016/j.apsusc.2015.10.192
H. Znad, K. Abbas, S. Hena, M.R. Awual, Journal of Environmental Chemical Engineering 6 (2018), 218-227. https://doi.org/10.1016/j.jece.2017.11.077
I. Othman Ali, A.M. Hassan, S.M. Shaaban, K.S. Soliman, Separation and Purification Technology 83 (2011) 38-44. https://doi.org/10.1016/j.seppur.2011.08.034
D. An, Y. Guo, Y. Zhu, Z. Wang, Chemical Engineering Journal 162 (2010) 509-514. https://doi.org/10.1016/j.cej.2010.05.052