Modification HKUST-1 as a catalyst for the reduction of 4-nitrophenol
DOI:
https://doi.org/10.51316/jca.2021.065Keywords:
HKUST-1, MOFS-199, Metal Organic Frameworks (MOFs), 4-nitrophenol, 4-aminophenol, paracetamolAbstract
HKUST-1 (MOF-199), a metal-organic framework material is synthesized from Cu(OH)2 and modified by Pt. The prepared catalysts were used to reduce 4-nitrophenol (4-NP) into 4-aminophenol (4-AP). Featured results of the catalysts by XRD, SEM, TEM, FTIR, BET, DTA/TGA... showed that metal modified process with reduced agent ethylene glycol had high efficiency, with modified yield up to 90 %. Under our experimental conditions, the catalysts based HKUST-1, containing Pt had high efficiency; conversion was greater than 93 % in reduced reaction of 4-NP. Thus, the catalyst sample contained 2% Pt was the most suitable for the reduction with conversion gained 99,4 % after 250s.
Downloads
References
S.S. Chui, S.M. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, Science, 283 (1999) 1148–1150. https://doi.org/10.1126/science.283.5405.1148
Q.M. Wang, D. Shen, M. Bulow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, J. Semanscin, Micropor. Mesopor. Mater. 55 (2002) 217-220. https://doi.org/10.1016/S1387-1811(02)00405-5
Y.-R. Lee, J. Kim, W.-S. Ahn, Korean J. Chem. Eng., vol. 30 (2013) 1667–1680. https://doi.org/10.1007/s11814-013-0140-6
R.S. Kumar, S.S. Kumar, M.A. Kulandainathan, Micropor. Mesopor. Mater. 168 (2013) 57–64. https://doi.org/10.1016/j.micromeso.2012.09.028
C. Zhu, Z. Zhang, B. Wang, Y. Chen, H. Wang, X. Chen, H. Zhang, N. Sun, W. Wei, Y. Sun, Microporous and Mesoporous Materials, 226 (2016) 476-481. https://doi.org/10.1016/j.micromeso.2016.02.029
Bùi Thị Thanh Hà, Đặng Thanh Tùng, Hà Phương Nam, Trịnh Xuân Bái, Tạ Ngọc Hùng, Hà Thị Lan Anh, Đinh Thị Thanh Hải, Tạ Ngọc Đôn, Tạp chí Xúc tác và Hấp phụ, 6(3) (2017) 25-31.
M.M. Peng, D.K. Kim, A. Aziz, K.R. Back, U.J. Jeon and H.T. Jang, MAS/ASNT 2012, CCIS 341 (2012) 244–251. https://doi.org/10.1007/978-3-642-35248-5_34
A.J. Nadeen, H. Patrick, T.M. Laura, G. Arthur, G. Patricia, S. Flor, F. Xiaolei, Chemical Engineering Journal, vol. 281 (2015) 669–677. https://doi.org/10.1016/j.cej.2015.07.020
S. H. Jhung., J.-H. Lee, P. M. Forster, G. Férey, A. K. Cheetham, J.-S. Chang, Chem. Eur. J., 12 (2006) 7899–7905. https://doi.org/10.1002/chem.200600270
Z.-Q. Li, L.-G. qiu. T. Xu, Y. Wu, W. Wang, Z.-Y. Wu, X. Jiang, Materials Letters 63 (2009) 78–80. https://doi.org/10.1016/j.matlet.2008.09.010
N.A. Khan, S.H. Jhung, Korean Chem. Soc., 30 (12), (2009) 2921-2926. https://doi.org/10.5012/bkcs.2009.30.12.2921
J. Kim, H.-Y. Cho, W.-S. Ahn, Catal. Surv. Asia, 16 (2012) 106–119. https://doi.org/10.1007/s10563-012-9135-2
N.M. Mahmoodi, J. Abdi, Microchemical Journal, 144 (2019), 436-442. https://doi.org/10.1016/j.microc.2018.09.033
D. Jiang, T. Mallat, F. Krumeich, A. Baiker, Journal of Catalysis, 257 (2008), 390–395. https://doi.org/10.1016/j.jcat.2008.05.021
K. Schlichte, T. Kratzke, S. Kaskel, Microporous and Mesoporous Materials, 73 (2004), 81–88. https://doi.org/10.1016/j.micromeso.2003.12.027
S.T. Meek , J. A. Greathouse, M. D. Allendorf, Materials Views, 23 (2011), 249–267. https://doi.org/10.1002/adma.201002854
L. Ma, C. Abney, W. Lin, Chemical Society Reviews, 38 (2009) 1248–1256. https://doi.org/10.1039/b807083k
W. Lin, W.J. Rieter, K. M. L. Taylor, Angew. Chem. Int., Ed. 48 (2009), 650–658. https://doi.org/10.1002/anie.200803387
J.M. Zamaro, N.C. Pérez, E.E. Miró, C. Casado, B. Seoane, C. Téllez, J. Coronas, Chemical Engineering Journal, 195–196 (2012) 180–187. https://doi.org/10.1016/j.cej.2012.04.091
Nam T.S. Phan, Tung T. Nguyen, Chi V. Nguyen, Thao T. Nguyen, Applied Catalysis A: General, 457 (2013) 69–77. https://doi.org/10.1016/j.apcata.2013.02.005
Q.Luo, X. Song, M. Ji, S.-E. Park, C. Hao, Y. Li, Applied Catalysis A: General, 478 (2014), 81–90. https://doi.org/10.1016/j.apcata.2014.03.041
B. Xiao, P.S. Wheatley, X. Zhao, A.J. Fletcher, S. Fox, A.G. Rossi, I.L. Megson, S. Bordiga, L. Regli, K.M. Thomas, R.E. Morris, J. Am. Chem. Soc., vol. 129 (2007) 1203–1209. https://doi.org/10.1021/ja066098k
Y.Chen, X. Mu, E. Lester, T. Wu, Progress in Natural Science: Materials International, 28 (2018) 584–589. https://doi.org/10.1016/j.pnsc.2018.08.002
J. Li, J. Yang, L. Li, J. Li, Journal of Energy Chemistry, 23 (2014), 453–460. https://doi.org/10.1016/S2095-4956(14)60171-6
H. Zhou, X. Liu, J. Zhang, X. Yan, Y. Liu, A. Yuan, Inter. J. hydrogen energy, 39 (2014), 2160–2167. https://doi.org/10.1016/j.ijhydene.2013.11.109
C. Petit, B. Levasseur, B. Mendoza, T.J. Bandosz, Microporous and Mesoporous Materials, 154 (2012), 107-112. http://dx.doi.org/10.1016/j.micromeso.2011.09.012
S. Ye, X. Jiang, L.-W. Ruan, B. Liu, Y.-M. Wang, J.-F. Zhu, L.-G. Qiu, Microporous and Mesoporous Materials, 179 (2013) 191–197. https://doi.org/10.1016/j.micromeso.2013.06.007
B. Sun, S. Kayal, A. Chakraborty, Energy, 76 (2014) 419–427. https://doi.org/10.1016/j.energy.2014.08.033
Q.Y. Yang, C.Y. Xue, C.L. Zhong, J.F. Chen, AIChE J., 53 (2007) 2832. https://doi.org/10.1002/aic.11298
J.-R. Li, R.J. Kuppler, H.C. Zhou, Chemical Society Reviews, 38 (2009) 1477–1504. https://doi.org/10.1039/B802426J
X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Micropor. Mesopor. Mater. 183 (2014) 69–73. https://doi.org/10.1016/j.micromeso.2013.09.009
S. Lin, Z. Song, G. Che, A. Ren, P. Li, C. Liu, J. Zhang, Micropor. Mesopor. Mater. 193 (2014) 27–34. https://doi.org/10.1016/j.micromeso.2014.03.004
R.V. Chaudhari, S.S. Divekar, M.J. Vaidya, C.V. Rode, US Patent 6 028 227 (2000).
D. Wu, X. Zhang, J. Zhu, D. Cheng, Eng. Sci., 2 (2018), 49–56. https://doi.org/10.30919/es8d718
S. Lee, C. Yim, S. Jeon, RSC Adv., 7 (2017) 31239-31243. https://doi.org/10.1039/C7RA04711H
Tuan T. Dang, Yinghuai Zhu, Joyce S. Y. Ngiam, Subhash C. Ghosh, Anqi Chen, and Abdul M. Seayad, ACS Catalysis, 3 (6) (2013) 1406-1410. https://doi.org/10.1021/cs400232b
D. Meziane, A.B. Kordjani, G. Nezzal, S. Benammar, A. Djadoun, Reac. Kinet. Mech. Cat. 122 (2) (2017) 1145–1158. https://doi.org/10.1007/s11144-017-1261-4
X. Jiang, B. Han, C. Zhou, K. Xia, Q. Gao, J. Wu, ACS Appl. Nano Mater. 1,12 (2018) 6692-6700. https://doi.org/10.1021/acsanm.8b01506
N. Goswami, M.L. Rahman, M.E. Huque, M. Qaisuddin, J. Chem. Technol. Biotech., 34 (1984) 195–202. https://doi.org/10.1002/jctb.5040340502
J.-H. Noh, R. Meijboom, in: Ajay Kumar Mishra (ed.) Application of Nanotechnology in Water Research, © Scrivener Publishing LLC, 2014, pp 333–405. https://doi.org/10.1002/9781118939314.ch13
Y. Mei, Y. Lu, F. Polzer, M. Ballauff, Chem. Mater., 19 (2007) 1062–1069. https://doi.org/10.1021/cm062554s
J.-H. Noh, R. Meijboom, Applied Catalysis A: General, 497 (2015) 107–120. http://dx.doi.org/10.1016/j.apcata.2015.02.039
S. Saha, A. Pal, S. Kundu, S. Basu, T. Pal, Langmuir, 26 (2010) 2885–2893. https://doi.org/10.1021/la902950x
K. Esumi, R. Isono, T. Yoshimura, Langmuir, 20 (2004) 237–243. https://doi.org/10.1021/la035440t
Y. Khalavka, J. Becker, C. Sönnichsen, J. Am. Chem. Soc., 131 (2009) 1871–1875. https://doi.org/10.1021/ja806766w
S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, J. Phys. Chem. C, 114 (2010) 8814–8820. https://doi.org/10.1021/jp101125j
X. Sun, P. He, Z. Gao, Y. Liao, S. Weng, Z. Zhao, H. Song, Z. Zhao, Journal of Colloid and Interface Science, 553 (2019) 1–13. https://doi.org/10.1016/j.jcis.2019.06.004
C. Duan, C. Liu, X. Meng, W. Lu, Y. Ni, Appl Organometal Chem. (2019) e4865. https://doi.org/10.1002/aoc.4865
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2018-BKA-66