Reduction of 4-nitrophenol to 4-aminophenol using Pt/HKUST-1 catalyst
DOI:
https://doi.org/10.51316/jca.2022.017Keywords:
HKUST-1, MOFS-199, Metal Organic Frameworks (MOFs), 4-nitrophenol, NaBH4, 4-aminophenol, paracetamolAbstract
The catalyst Pt/HKHUST-1 was used for synthesis 4-aminophenol (4-AP) by reducsion 4-nitrophenol (4-NP). Factors that affected to the reaction were tested: ratio 4-NP/NaBH4, temperature and time of the reaction. Changing the ratio of 4-NP/NaBH4 in the direction of increasing NaBH4, the reaction rate increases. However, it is acceptable to reduce the reaction rate when synthesizing with high concentration of reactants. The 4-AP synthesis is performed with ratio 4-NP/NaBH4 = 1/5, suitable time and temperature for this reaction is 60 minutes and 15 oC. The catalyst sample containing 2% Pt on HKUST-1 material was used to synthesize 4-AP with the yield of 65.3% (average 64.2%), the catalyst has good stability, can reused many times. The purity of 4-AP after refining was > 99 %.
Downloads
References
4-Nitrophenols, Health and Environmental Effects Profile in US Environmental Protection Agency, Washington, DC (1980); 135. (Update 2000: https://www.epa.gov/sites/default/files/2016-09/documents/4-nitrophenol.pdf )
O.A. O’Connor, L.Y. Young, Environ. Toxicol. Chem., 8 (1989) 853–862. https://doi.org/10.1002/etc.5620081003
J.-H. Noh, R. Meijboom, in: Ajay Kumar Mishra (ed.) Application of Nanotechnology in Water Research, © Scrivener Publishing LLC, (2014) 333–405. https://doi.org/10.1002/9781118939314.ch13
R.V. Chaudhari, S.S. Divekar, M.J. Vaidya, C.V. Rode, US Patent 6 028 227 (2000).
X. Jiang, B. Han, C. Zhou, K. Xia, Q. Gao, J. Wu, ACS Appl. Nano Mater. 1,12 (2018) 6692-6700. https://doi.org/10.1021/acsanm.8b01506
D. Wu, X. Zhang, J. Zhu, D. Cheng, Eng. Sci., 2 (2018) 49–56. https://doi.org/10.30919/es8d718
S. Lee, C. Yim, S. Jeon, RSC Adv., 7 (2017) 31239-31243. https://doi.org/10.1039/C7RA04711H
Tuan T. Dang, Yinghuai Zhu, Joyce S. Y. Ngiam, Subhash C. Ghosh, Anqi Chen, and Abdul M. Seayad, ACS Catalysis, 3 (6) (2013) 1406-1410. https://doi.org/10.1021/cs400232b
D. Meziane, A.B. Kordjani, G. Nezzal, S. Benammar, A. Djadoun, Reac. Kinet. Mech. Cat. 122 (2) (2017), 1145–1158. https://doi.org/10.1007/s11144-017-1261-4
N. Goswami, M.L. Rahman, M.E. Huque, M. Qaisuddin, J. Chem. Technol. Biotech., 34 ( 1984) 195–202. https://doi.org/10.1002/jctb.5040340502
Y. Mei, Y. Lu, F. Polzer, M. Ballauff, Chem. Mater., 19 (2007) 1062–1069. https://doi.org/10.1021/cm062554s
N. Pradhan, A. Pal, T. Pal, Langmuir, 17 (2001) 1800–1802.
https://doi.org/10.1021/la000862d
S. Saha, A. Pal, S. Kundu, S. Basu, T. Pal, Langmuir, 26 (2010) 2885–2893. https://doi.org/10.1021/la902950x
X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Micropor. Mesopor. Mater. 183 (2014) 69–73. https://doi.org/10.1016/j.micromeso.2013.09.009
S. Senthil kumar, C. Siva kumar, J. Mathiyarasu, K.L.N. Phani, Langmuir 23 (2007) 3401-3408. https://doi.org/10.1021/la063150h.
J.-H. Noh, R. Meijboom, Applied Catalysis A: General, 497 (2015) 107–120.
https://dx.doi.org/10.1016/j.apcata.2015.02.039
K. Esumi, R. Isono, T. Yoshimura, Langmuir, 20 (2004) 237–243.
https://doi.org/10.1021/la035440t
Y. Khalavka, J. Becker, C. Sönnichsen, J. Am. Chem. Soc., 131 (2009), 1871–1875. https://doi.org/10.1021/ja806766w
S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, J. Phys. Chem. C, 114 (2010) 8814–8820. https://doi.org/10.1021/jp101125j
Bui Thi Thanh Ha, Le Van Duong, Ta Ngoc Hung, Le Ngoc Duong, Ta Ngoc Don, Modification HKUST-1 as a catalyst for the reduction of 4-nitrophenol, Vietnam Journal of Catalysis and Adsorption, 10 (4) (2021) 27-38 https://doi.org/10.51316/jca.2021.065
X. Sun, P. He, Z. Gao, Y. Liao, S. Weng, Z. Zhao, H. Song, Z. Zhao, Journal of Colloid and Interface Science, 553 (2019) 1–13. https://doi.org/10.1016/j.jcis.2019.06.004
C. Duan, C. Liu, X. Meng, W. Lu, Y. Ni, Appl Organometal Chem. (2019) e4865. https://doi.org/10.1002/aoc.4865
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2018-BKA-66