Synthesis and photocatalytic activity of magnetic Fe3O4–ZnO composite
Abstract
Magnetic Fe3O4-ZnO composite was synthesized by combining green chemistry method and hydrothermally technique, in which ZnO was hydrothermally grown in the presence of Fe3O4 formerly prepared using green tea extract as a reducing agent and Fe(NO3)3. For comparison, Fe3O4 and ZnO were prepared. The as-prepared samples were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible diffuse reflectance spectroscopy. The results show that the Fe3O4-ZnO composite contains two components ZnO and Fe3O4, and can absorb more visible light than ZnO. The photocatalytic activity of Fe3O4-ZnO composite was assessed by degradation of Rhodamine B (RhB) under visible light, shows that the composite exhibits the higher activity compared to the single component, ZnO and Fe3O4. This result can be believed enhancement of electron transfer on the surface of photocatalyst via Fe(II)-Fe(III) pair of Fe3O4. A mechanism for photocatalytic degradation of RhB on the composite was proposed. Using the magnetic property of composite for recovery of photocatalyst in reaction mixtures was demonstrated.
Downloads
References
S. Ahmed, M. G. Rasul, R. Brown, M. A. Hashi, Journal of Environmental Management, 92, (2011), p. 311–330.
M. Azarang, A. Shuhaimi, R. Yousefi, S. P. Jahromi, RSC Adv., 5, (2015), p. 21888–21896.
S. M. Jilani, P. Banerji, ACS Appl. Mater. Interfaces, 6, (2014), p. 16941–16948.m
M. Azarang, A. Shuhaimi, R. Yousefi, A. M. Golsheikh, M. Sookhakian,Ceram. Int., 40, (2014), p. 10217–10221.
J.F. Guo, B.W. Ma, A.Y. Yin, K.N. Fan, W.L. Dai, Appl. Catal. B, 101, (2011),p. 580–586.m
M. Cano, K. Sbargoud, Green Chem., 14 (2012), p. 1786–1795.
L.L. Sun, W. Wu, S.L. Yang, J. Zhou, M.Q. Hong, X.H. Xiao, F. Ren, C.Z. Jiang, ACS Appl. Mater. Interfaces, 6, (2014), p. 1113–1124.
X.H. Feng , H.J. Guo , K. Patel , H. Zhou, X. Lou, Chem. Eng. J., 244, (2014), p. 327–334.
R. Chalasani, S. Vasudevan, ACS Nano, 7, (2013), p. 4093–4104.
W. Wu, C.Z. Jiang, V.A.L. Roy, Nanoscale, 7, (2015), p. 38–58.
L. Zhuang, W. Zhang, Y. Zhao, H. Shen, H. Lin, J. Liang, Scientific reports, 5, (2015), p. 1–6.
J. Wang, B. Chen, N. Jin, G. Xia, Y. Chen, Y. Zhou, X. Cai, J. Ding, X. Li, and X. Wang, Int J Nanomedicine., 6, (2011), p. 605–610.
M.J. Akhtar, M. Ahamed, S. Kumar, M.M. Khan, J. Ahmad, S.A. Alrokayan, Int J Nanomedicine., 7, (2012), p. 845-857.
A. Khorsand Zak, R. Razali, W.H. Abd Majid, Majid Darroudi, International Journal of Nanomedicine, 6, (2011), p. 1399–1403.
S. P. Prakoso, R. Saleh, Materials Sciences and Applications, 8 (3), (2012), p. 530–537.m
H. Veisia, A. Sedrpoushan, B. Maleki, M. Hekmati, M. Heidari, and S. Hemmati, Appl. Organometal. Chem., 29, (2015), p. 834–839.m
Z. Xu, L. Ding, Y. Long, L. G. Xu, L. Wang, C. Xu, Anal. Methods, 3, (2011), p. 1737.m
M. Kim, S. Hwang, J.-S. Yu, J. Mater. Chem., 17, (2007), p. 1656–1659.m
P. Wang, H. Du, S. Shen, M. Zhang, B. Liu, Nanoscale Research Letters, 7, (2012), p. 176–180.m
S. S. Kumar, P. Venkateswarlu, V. R. Rao, G. N. Rao, International Nano Letters, 3, (2013), p. 30–36.
M. B. Gawande, A. Velhinho, I. D. Nogueira, C. A. A. Ghumman, O. M. N. D. Teodoro, P. S. Branco, RSC Adv., 2, (2012), p. 6144–6149.m
S. Kuriakose, V. Choudhary, B. Satpati, S. Mohapatra, Beilstein J. Nanotechnol., 5, (2014), p. 639–650.
X. Feng, H. Guo, K. Patel, H. Zhou, X. Lou, Chemical Engineering Journal, 244, (2014), p. 327–334.
S. Feizpoor, A. Habibi-Yangjeh, Journal of Colloid and Interface Science, 524, (2018), p. 325–336.m
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.