Sn doped Hematite Nanorods for High-Performance Photoelectrochemical Water Splitting
DOI:
https://doi.org/10.51316/jca.2021.129Keywords:
Photoelectrochemical Cell, Water Splitting, Hematite, Sn doping, PhotoanodeAbstract
Photoelectrochemical water splitting is of great attention due to its environmentally friendly generation of clean fuels. Hematite (α-Fe2O3) is considered a promising candidate due to its intrinsic properties for the high-performance photoelectrochemical electrode, such as favorable bandgap (2.0–2.2 eV), a suitable energy band position non-toxicity, low cost, and excellent chemical stability. Herein, we report about Sn-doped hematite nanorods and their implementation as photoanodes for photoelectrochemical water splitting. We provide the simple but efficient route to incorporate the Sn into the hematite without structural damage in the nanostructure and scrutinize the effect of Sn dopant on the photoelectrochemical activity of the hematite. Sn can be successfully incorporated into the hematite by the two-step heat treatment process, which reveals the enhanced photoelectrochemical responses compared with undoped hematite. We elaborate on the effect of Sn dopant in the hematite on the photoelectrochemical activities, thereby suggesting the optimum concentration of Sn dopant.
Downloads
References
M. Grätzel, Nature., 414 (2001) 338. https://doi.org/10.1038/35104607
J. Gan, X. Lu, Y. Tong, Nanoscale., 6 (2014) 7142-7164. https://doi.org/10.1039/c4nr01181c
M. Mishra, D.-M. Chun, Appl. Catal. A Gen., 498 (2015) 126-141. https://doi.org/10.1016/j.apcata.2015.03.023
J. Brillet, M. Gratzel, K. Sivula, Nano lett., 10 (2010) 4155-4160. https://doi.org/10.1021/nl102708c
M. Gaudon, N. Pailhé, J. Majimel, A. Wattiaux, J. Abel, A. Demourgues, J. Solid State Chem., 183 (2010) 2101-2109. https://doi.org/10.1016/j.jssc.2010.04.043
Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Nano Lett. 11 (2011) 2119-2125. https://doi.org/10.1021/nl200708y
Y. Ling, Y. Li, Part. Part. Syst. Char., 31 (2014) 1113-1121. https://doi.org/10.1002/ppsc.201400051
R.M. Guanjie Ai, H. Li, J. Zhong, Nanoscale. 7 (2015) 6722-6728. https://doi.org/10.1039/C5NR00863H
M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. Fang, Y. Tong, Y. Li, Nano Lett. 17 (2017) 2490-2495. https://doi.org/10.1021/acs.nanolett.7b00184
H. Naono, K. Nakai, T. Sueyoshi, H. Yagi, J. Colloid Interface Sci. 120 (1987) 439-450. https://doi.org/10.1016/0021-9797(87)90370-5
N. D. Quang, T.T. Hien, N.D. Chinh, D. Kim, C. Kim, D. Kim, Electrochim. Acta. 295 (2019) 710-718. https://doi.org/10.1016/j.electacta.2018.11.008
L. Mei, L. Liao, Z. Wang, C. Xu, Adv. Mate. Sci. Eng., (2015) 1-10. https://doi.org/10.1155/2015/250836
H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, Y. Lv, J. Mater. Chem. 21 (2011) 5972. https://doi.org/10.1039/C0JM04331A
N.T. Hahn, C.B. Mullins, Chem. Mater. 22 (2010) 6474-6482. https://doi.org/10.1021/cm1026078
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers GUST.SIS.ĐT2020-HH13