Study on the synthesis of heterojunction Cu2O-BiVO4 catalysts for the photoelectrochemical water splitting

Authors

  • Nguyen Thi Mo Hanoi National University of Education Author
  • Nguyen Minh Chau Hanoi National University of Education Author
  • Nguyen Minh Bach Hanoi National University of Education Author

DOI:

https://doi.org/10.62239/jca.2024.085

Keywords:

Photoelectrochemical water splitting, Cuprous oxide, Bismuth vanadate

Abstract

Photoelectrochemical water splitting to convert solar energy into chemical energy stored in hydrogen fuel is a challenging task. In this work, BiVO4 was synthesized by the hydrothermal method. Cu2O was incorporated with BiVO4 by the reduction of Cu2+ with ascorbic acid on the BiVO4 particles, varying the Cu:Bi ratio in the reaction and reaction time. The prepared samples were characterized by XRD, SEM and UV-Vis DRS. Cu2O was formed with a low content and was well dispersed on the surface of BiVO4. The synthesized Cu2O-BiVO4 can absorb radiation in both UV and vision ranges with a wavelength less than 465 nm. The incorporation of Cu2O and BiVO4 can lead to an increase in the photocatalytic performance of the materials with both higher photogenerated current density and dark current density. The 3:10 Cu:Bi ratio in the reaction mixture is considered the optimum ratio for better photoelectrochemical activity of the synthesized catalyst.

Downloads

Download data is not yet available.

References

S. Manna, A.K. Satpati, C.N. Patra, A.K. Tyagi, ACS Omega. 9(6) (2024) 6128. https://doi.org/10.1021/acsomega.3c07867

K. Ren, J. Zhou, Z. Wu, Q. Sun, L. Qi, Small 20(1) (2024). https://doi.org/10.1002/smll.202304835

S. Xia, F. Xu, B. Weng, J. Mater. Chem. A 12 (2024) 4635-4642. https://doi.org/10.1039/D3TA06532D

X. Fan, Q. Chen, F. Zhu, T. Wang, B. Gao, L. Song, J. He, Molecules 29(2) (2024) 372. https://doi.org/10.3390/molecules29020372

Song, Y. Zhang, Z. Li, J. Hu, Mater. Sci. Eng. B. 302 (2024) 117241. https://doi.org/10.1016/j.mseb.2024.117241

Song, P. Bogdanoff, A. Esau, I. Y. Ahmet, I. Levine, T. Dittrich, T. Unold, R. van de Krol, S. P. Berglund, ACS Appl. Mater. Interfaces 12 (12) (2020) 13959–13970. https://doi.org/10.1021/acsami.0c00696

S. Liu, W. Wang, Y. Cheng, L. Yao, Y. Liu, M. Lin, H. Chen, Y. Liang, J. Fu, L. Wang. Ceram. Int. 48(6) (2022) 7613-7621. https://doi.org/10.1016/j.ceramint.2021.11.305

S. D.Tilley, ACS Energy Lett. 8 (5) (2023) 2338–2344. https://doi.org/10.1021/acsenergylett.3c00578

J. Cheng, L. Wu, J. Luo, Chem. Phys. Rev. 3 (2022) 031306. https://doi.org/10.1063/5.0095088

M. Ma, L. E, D. Zhao, Y. Xin, X. Wu, Y. Meng, Z. Liu, Colloids Surf. A: Physicochem. Eng. 633 (1) (2022) 127834. https://doi.org/10.1016/j.colsurfa.2021.127834

J. Jian, R. Kumar, J. Sun, ACS Appl. Energy Mater. 3 (2020) 10408−10414. https://doi.org/10.1021/acsaem.0c01198

S. Bai, J. Han, Y. Zhao, H. Chu, S. Wei, J. Sun, L. Sun, R. Luo, D. Li, A. Chen, Renew. Energy 148 (2020) 380-387. https://doi.org/10.1016/j.renene.2019.10.044

H. Kim, S. Bae, D. Jeon, J. Ryu, Green Chem. 20 (2018), 3732-3742. https://doi.org/10.1039/C8GC00681D

M. Liaqat, T. Iqbal, Z. Ashfaq, S. Afsheen, R. R. M. Khan, M. A. Sayed, A. M. Ali, J. Chem. Phys. 159 (2023) 204704. https://doi.org/10.1063/5.0176106

S.S.R. Raghavan, N.G. Andrews, R. Sellappan, Catalysts 13 (2023) 144. https://doi.org/10.3390/catal13010144

H. Jeong, H. Ryu, J. S. Bae, J. Ind. Eng. Chem, 104 (2021) 416-426. https://doi.org/10.1016/j.jiec.2021.08.037

Published

30-12-2024

Issue

Section

Full Articles

How to Cite

Study on the synthesis of heterojunction Cu2O-BiVO4 catalysts for the photoelectrochemical water splitting. (2024). Vietnam Journal of Catalysis and Adsorption, 13(4), 119-124. https://doi.org/10.62239/jca.2024.085

Share

Funding data

Similar Articles

1-10 of 163

You may also start an advanced similarity search for this article.