Study on the synthesis of heterojunction Cu2O-BiVO4 catalysts for the photoelectrochemical water splitting
DOI:
https://doi.org/10.62239/jca.2024.085Keywords:
Photoelectrochemical water splitting, Cuprous oxide, Bismuth vanadateAbstract
Photoelectrochemical water splitting to convert solar energy into chemical energy stored in hydrogen fuel is a challenging task. In this work, BiVO4 was synthesized by the hydrothermal method. Cu2O was incorporated with BiVO4 by the reduction of Cu2+ with ascorbic acid on the BiVO4 particles, varying the Cu:Bi ratio in the reaction and reaction time. The prepared samples were characterized by XRD, SEM and UV-Vis DRS. Cu2O was formed with a low content and was well dispersed on the surface of BiVO4. The synthesized Cu2O-BiVO4 can absorb radiation in both UV and vision ranges with a wavelength less than 465 nm. The incorporation of Cu2O and BiVO4 can lead to an increase in the photocatalytic performance of the materials with both higher photogenerated current density and dark current density. The 3:10 Cu:Bi ratio in the reaction mixture is considered the optimum ratio for better photoelectrochemical activity of the synthesized catalyst.
Downloads
References
S. Manna, A.K. Satpati, C.N. Patra, A.K. Tyagi, ACS Omega. 9(6) (2024) 6128. https://doi.org/10.1021/acsomega.3c07867
K. Ren, J. Zhou, Z. Wu, Q. Sun, L. Qi, Small 20(1) (2024). https://doi.org/10.1002/smll.202304835
S. Xia, F. Xu, B. Weng, J. Mater. Chem. A 12 (2024) 4635-4642. https://doi.org/10.1039/D3TA06532D
X. Fan, Q. Chen, F. Zhu, T. Wang, B. Gao, L. Song, J. He, Molecules 29(2) (2024) 372. https://doi.org/10.3390/molecules29020372
Song, Y. Zhang, Z. Li, J. Hu, Mater. Sci. Eng. B. 302 (2024) 117241. https://doi.org/10.1016/j.mseb.2024.117241
Song, P. Bogdanoff, A. Esau, I. Y. Ahmet, I. Levine, T. Dittrich, T. Unold, R. van de Krol, S. P. Berglund, ACS Appl. Mater. Interfaces 12 (12) (2020) 13959–13970. https://doi.org/10.1021/acsami.0c00696
S. Liu, W. Wang, Y. Cheng, L. Yao, Y. Liu, M. Lin, H. Chen, Y. Liang, J. Fu, L. Wang. Ceram. Int. 48(6) (2022) 7613-7621. https://doi.org/10.1016/j.ceramint.2021.11.305
S. D.Tilley, ACS Energy Lett. 8 (5) (2023) 2338–2344. https://doi.org/10.1021/acsenergylett.3c00578
J. Cheng, L. Wu, J. Luo, Chem. Phys. Rev. 3 (2022) 031306. https://doi.org/10.1063/5.0095088
M. Ma, L. E, D. Zhao, Y. Xin, X. Wu, Y. Meng, Z. Liu, Colloids Surf. A: Physicochem. Eng. 633 (1) (2022) 127834. https://doi.org/10.1016/j.colsurfa.2021.127834
J. Jian, R. Kumar, J. Sun, ACS Appl. Energy Mater. 3 (2020) 10408−10414. https://doi.org/10.1021/acsaem.0c01198
S. Bai, J. Han, Y. Zhao, H. Chu, S. Wei, J. Sun, L. Sun, R. Luo, D. Li, A. Chen, Renew. Energy 148 (2020) 380-387. https://doi.org/10.1016/j.renene.2019.10.044
H. Kim, S. Bae, D. Jeon, J. Ryu, Green Chem. 20 (2018), 3732-3742. https://doi.org/10.1039/C8GC00681D
M. Liaqat, T. Iqbal, Z. Ashfaq, S. Afsheen, R. R. M. Khan, M. A. Sayed, A. M. Ali, J. Chem. Phys. 159 (2023) 204704. https://doi.org/10.1063/5.0176106
S.S.R. Raghavan, N.G. Andrews, R. Sellappan, Catalysts 13 (2023) 144. https://doi.org/10.3390/catal13010144
H. Jeong, H. Ryu, J. S. Bae, J. Ind. Eng. Chem, 104 (2021) 416-426. https://doi.org/10.1016/j.jiec.2021.08.037
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2022-SPH-15