Green synthesis of HAp/CS@β-CD nanocomposite and its applications for bone cell proliferation

Authors

  • Pham Thi Yen Phi Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Vien Street, Bac Tu Liem District, Hanoi, Vietnam. Author
  • Tran Thi Ngoc Bich Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Vien Street, Bac Tu Liem District, Hanoi, Vietnam. Author
  • Le Thi Thuy Vi Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Vien Street, Bac Tu Liem District, Hanoi, Vietnam. Author
  • Phan Trung Kien Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Vien Street, Bac Tu Liem District, Hanoi, Vietnam. Author
  • Nguyen Van Teo Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Vien Street, Bac Tu Liem District, Hanoi, Vietnam. Author
  • Pham Xuan Nui Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Pho Vien, Duc Thang, Bac Tu Liem District, Hanoi, Vietnam Author

DOI:

https://doi.org/10.62239/jca.2024.017

Keywords:

nHAp, nanocomposite, nHAp/CS@β-CD, Ficus pumila (L.), cell proliferation

Abstract

In this study, nHAp/CS@β–CD–E nanocomposite has been synthesized by incorporating of chitosan (CS), β-cyclodextrin (β-CD), and Ficus pumila (L.) leaf extract with nano-hydroxyapatite (nHAp) via co-precipitation method. Meanwhile, the nHAp obtained from seashells as the starting material sources. The formation of nHAp crystalline phase structure, interfacial interactions, thermal stability and surface structural morphology of nanocomposite samples were characterized by physicochemical methods including XRD, FT-IR, TGA/DTA and SEM, respectively. Investigation of osteoblast cell proliferation activity for the MT3C3-osteoblast cell line was carried out using the MMT method. The results showed that nHAp/CS@β–CD biocomposite has osteoblastic cell proliferation activity, in which the composite contains the Ficus pumila (L.) leaf extract has higher activity than composite without extract. This research has new prospects in the field of biomedical material research. 

Downloads

Download data is not yet available.

References

B.X. Vuong, U.N. Huy, M.T. Tuyet, V.O. Kieu, B.T. Hoa, Hue University Journal of Science (HU JOS) 92(4), 2014.

F. Baino, G. Novajra, V. Miguez-Pacheco, A.R. Boccaccini, C. Vitale-Brovarone, J. Non. Cryst. Solids 432 2016) 15–30. https://doi.org/10.1016/j.jnoncrysol.2015.02.015

B.X. Vương, VNU Journal of Science 34 (2018) 9-15. https://doi.org/10.25073/2588-1140/vnunst.4689

S.-L. Bee, Z.A.A. Hamid, Ceram Int. 46 (2020) 17149–17175. https://doi.org/10.1016/j.ceramint.2020.04.103

H.Q. Phong và cộng sự, Tạp chí Khoa học Trường Đại học Cần Thơ 56 (2020) 199–211. https://doi.org/10.22144/ctu.jsi.2020.056

T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24 (2003) 2161–2175. https://doi.org/10.1016/S0142-9612(03)00044-9

A.M. Martins, C.M. Alves, F.K. Kasper, A.G. Mikos, R.L. Reis, J. Mater. Chem. 20 (2010) 1638–1645. https://doi.org/10.1039/B916259N

V.C. Dumont, H.S. Mansur, A.A.P. Mansur, S.M. Carvalho, N.S.V. Capanema, B.R. Barrioni, Int. J. Biol. Macromol. 93 (2016) 1465-1478. https://doi.org/10.1016/j.ijbiomac.2016.04.030

D. Gopi, S. Nithiya, E. Shinyjoy, D. Rajeswari, L. Kavitha, Ind. Eng. Chem. Res. 53 (2014) 7660–7669.

https://doi.org/10.1021/ie403903q.

B. Lowe, J. Venkatesan, M.S. Shim, S.K. Kim, Int. J. Biol. Macromol. 93 (2016) 1479-1487. https://doi.org/10.1016/j.ijbiomac.2016.02.054

K. Pandi, N. Viswanathan, Carbohydr. Polym. 134 (2015) 732–739. https://doi.org/10.1016/j.carbpol.2015.08.003

M. Shakir, R. Jolly, M.S. Khan, A. Rauf, S. Kazmi, Int. J. Biol. Macromol. 93 (2016) 276–289. https://doi.org/10.1016/j.ijbiomac.2016.08.046

X.-M. Liu, A.T. Wiswall, J.E. Rutledge, M.P. Akhter, D.M. Cullen, R.A. Reinhardt, D. Wang, Biomaterials 29(11) (2008) 1686–1692. https://doi.org/10.1016/j.biomaterials.2007.12.023

N.H. An et al., Sở Khoa học và Công nghệ TP.Hồ Chí Minh, chương trình Vườn ươm Sáng tạo Khoa học và Công nghệ, 2017.

P.X. Nui, P.T. Ngan, N.T. Hoa, T.T. Thanh-Huong, N.T. Phuong-Lan, T.T. Van-Thi, Vietnam Journal of Catalysis and Adsorption 8(2) (2019) 74-80.

M. Sawada, K. Sridhar, Y. Kanda, S. Yamanaka, Scientific Reports 11 (2021) 11546. http://doi.org/10.1038/s41598-021-91064-y

P. Szterner, M. Biernat, Bioinorg. Chem. Appl. 2 (2022) 1-13. https://doi.org/10.1155/2022/3481677

S. Bramhe, T.N. Kim, A. Balakrishnan, M.C. Chu, Mater. Lett. 135 (2014) 195–198. https://doi.org/10.1016/j.matlet.2014.07.137

X. Zhang, K.S. Vecchio, Mater. Sci. Eng. C 26(8) (2006) 1445–1450. https://doi.org/10.1016/j.msec.2005.08.007

B.H. Ataka, B. Buyuk, M. Huysal, S. Isika, M. Senel, W. Metzger, G. Cetin, Carbohydr. Polym. 164 (2017) 200–213. https://doi.org/10.1016/j.carbpol.2017.01.100

S.F. Mansour, S.I. El-dek, S.V. Dorozhkin, M.K. Ahmed, New J. Chem. 41(22) (2017) 13773-13783. https://doi.org/10.1039/C7NJ01777D

S. Ghosh, S. Ghosh, N. Pramanik, Adv. Compos. Hybrid Mater. 3 (2020) 303 - 314. https://doi.org/10.1007/s42114-020-00154-4

T. Xu, R. Zou, X. Lei, X. Qi, Q. Wu, W. Yao, Q. Xu, Appl. Catal. B: Environ. 245 (2019) 662–671. https://doi.org/10.1016/j.apcatb.2019.01.020

F.M. Queiroz, T.R.K. Melo, A.D. Sabry, L.G. Sassaki, O.A.H. Rocha, Mar. Drugs 13 (2014) 141–158. https://doi.org/10.3390/md13010141

I. Zia, R. Jolly, S. Mirza, A. Rehman, M. Shakir, Chemistry Select 7 (2022) 1-10. https://doi.org/10.1002/slct.202103234

Published

30-03-2024

Issue

Section

Full Articles

How to Cite

Green synthesis of HAp/CS@β-CD nanocomposite and its applications for bone cell proliferation. (2024). Vietnam Journal of Catalysis and Adsorption, 13(1), 99-104. https://doi.org/10.62239/jca.2024.017

Share

Funding data

Similar Articles

1-10 of 71

You may also start an advanced similarity search for this article.