Vanadium-doped TiO2 Adsorbent-Photocatalyst for Organic Dye Treatment
DOI:
https://doi.org/10.62239/jca.2024.045Abstract
This study focuses on the synthesis of V-doped TiO2 materials using a modified polyol method to enhance their efficiency. The obtained materials were characterized by various methods such as XRD, EDX, FTIR, SEM, TEM-SAED, Raman, and UV-Vis DRS. The results indicated the crystalline anatase phase of TiO2, with spherical morphology and an average size of 30nm. The UV-DRS measurement demonstrated that doped materials have a lower bandgap than the pristine TiO2. The material possesses dual functionality, with adsorption capability and photocatalytic activity applied to treat organic dye contaminants. Evaluation of MB degradation under UV irradiation revealed an exceptional efficiency of up to 99% within a remarkably short duration of 30 minutes. Furthermore, the catalyst exhibited robust recovery efficiency exceeding 99% after 2 regeneration cycles and retention of approximately 80% after four cycles.
Downloads
References
M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoke, Annu. Rev. Mater. Res. 35 (2005) 1-27. https://doi.org/10.1146/annurev.matsci.35.100303.121340
X. Li, F. Li, C. Yang, W. Ge, J. Photochem. Photobiol. A Chem. 141 (2001) 209-217. https://dx.doi.org/10.1016/S1010-6030(01)00446-4
C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J. Gole, Nano Lett. 3 (2003) 1049-1051. https://doi.org/10.1021/nl034332o
S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito, T. Sato, J. Mater. Chem. 13 (2003) 2996.
H. Irie, Y. Wanatabe, K. Hashimoto, J. Phys. Chem. B 107 (2003) 5483-5486. https://dx.doi.org/10.1021/jp030133h
Chen, X., Mao, S.S., Chem. Rev. 38 (41) (2007) 2891–2959.
Cui, X., Li, Y., Zhang, Q., Int. J. Photogr. 1110–662X (2012) 1302–1312.
J. C. S. Wu and C. H. Chen, J Photochem Photobiol A Chem 163 3 (2004). https://doi.org/ 10.1016/j.jphotochem.2004.02.007.
K. Belfaa, M. S. Lassoued, S. Ammar, and A. Gadri, Journal of Materials Science: Materials in Electronics 29 12 (2018), https://doi.org/10.1007/s10854-018-9080-6.
G. Zerjav, K. Zizek, J. Zavasnik, and A. Pintar, J Environ Chem Eng 10 3 (2022) 107722. https://doi.org/10.1016/j.jece.2022.107722.
S. Stojadinoviyc, N. Radi, P. Stefanov, Z. Dohcevic-Mitrovic d, B. Grbic, R. Vasilc, Materials Chemistry and Physics. 151 (2015) 337-44. https://doi.org/10.1016/j.matchemphys.2014.11.077
B. W. Mwakikunga, M. Maaza, K. T. Hillie, C. J. Arendse, T. Malwela, and E. Sideras-Haddad, Vib Spectrosc 61 (2012). https://doi.org/10.1016/j.vibspec.2012.02.007.
T. Dao Thi, L. Phung Thi, M. Nguyen Thi, H. Nguyen Ngoc, H. Nguyen Thi Thu, and C. Le Minh, Vietnam Journal of Catalysis and Adsorption 10 3 (2021) 113-120. https://doi.org/10.51316/jca.2021.059.
Y. Wu, J. Zhang, L. Xiao, and F. Chen, Appl Surf Sci 256 13, (2010) 4260-4268. https://doi.org/10.1016/j.apsusc.2010.02.012.
T. A. Kandiel, L. Robben, A. Alkaim, and D. Bahnemann, Photochemical and Photobiological Sciences 12 (2013) 602-209. https://doi.org/10.1039/c2pp25217a.
W. Avansi, R. Arenal, V. R. De Mendonça, C. Ribeiro, and E. Longo, CrystEngComm 16 23 (2014) 5021-5027. https://doi.org/10.1039/c3ce42356e.
S. Dai, Y. Wu, T. Sakai, Z. Du, H. Sakai, and M. Abe, Nanoscale Res Lett 5 11 (2010) 1829-1835. https://doi.org/10.1007/s11671-010-9720-0.
T. B. Nguyen, M. J. Hwang, and K. S. Ryu, Appl Surf Sci 258 19 (2012) 7299-7305. https://doi.org/10.1016/j.apsusc.2012.03.148.
J. Zhang, Y. Li, L. Li, W. Li, and C. Yang, ACS Sustain Chem Eng 6 10 (2018) 12893-12905. https://doi.org/10.1021/acssuschemeng.8b02264.
Khan, H., Berk, D., Journal of Sol-Gel Science and Technology 68(2) (2013). https:/doi.org/10.1007/s10971-013-3150-2.
Lin, W. C., Lin, Y. J., Environmental Engineering Science, 29(6) (2012). https://doi.org/10.1089/ees.2010.0350.
Nguyen, T. B., Hwang, M. J., & Ryu, K. S., Applied Surface Science 258(19) (2012). https//doi.org/10.1016/j.apsusc.2012.03.148.
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers CT 2022.04.BKA.02