Preparation of multi-oxide (Cu-Mn) supported on alumina monolith catalyst by corona plasma method for CO oxidation reaction at low temperature
Abstract
In this study, multi-oxide catalysts (Cu-Mn) were prepared by corona plasma and wet impregnation methods. Characteristics of catalysts are determined by modern physicochemical methods such as: Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal analysis by thermal weighing (TGA - Thermogravimetric Analysis), observing the surface with transmission electron microscopy (TEM). All catalysts are determined to be active for the treatment of emissions through the oxidation of CO in the gas phase. The results showed that the use of corona plasma method for smaller particle size, uniform dispersion and higher specific surface area when compared with the wet impregnation methods. The activity of catalyst prepared by corona plasma method is also 20-25% higher than wet impregnation method.
Downloads
References
Kim, S. C., & Shim, W. G. (2010). Catalytic combustion of VOCs over a series of manganese oxide catalysts. Applied Catalysis B: Environmental, 98(3-4), 180–185. https://doi.org/10.1016/j.apcatb.2010.05.027
Xu, J., White, T., Li, P., He, C., Yu, J., Yuan, W., & Han, Y.-F. (2010). Biphasic Pd−Au Alloy Catalyst for Low-Temperature CO Oxidation. Journal of the American Chemical Society, 132(30), 10398–10406. https://doi.org/10.1021/ja102617r
Ivanova, A. S., Slavinskaya, E. M., Gulyaev, R. V., Zaikovskii, V. I., Stonkus, О. А., Danilova, I. G., … Boronin, A. I. (2010). Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Applied Catalysis B: Environmental, 97(1-2), 57–71. https://doi.org/10.1016/j.apcatb.2010.03.024
Y. Lang, J. Zhang, Z. Feng, X. Liu, Y. Zhu, T. Zeng, Y. Zhao, R. Chen and B. Shan. CO oxidation over MOx (M = Mn, Fe, Co, Ni, Cu) supported on SmMn2O5 composite catalysts. Catal. Sci. Technol., 2018, https://doi.org/10.1039/C8CY01263F.
Huang, H., Leung, D. Y. C., & Ye, D. (2011). Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. Journal of Materials Chemistry, 21(26), 9647. https://doi.org/10.1039/c1jm10413f
Koo, K. Y., Jung, U. H., & Yoon, W. L. (2014). A highly dispersed Pt/γ-Al2O3 catalyst prepared via deposition–precipitation method for preferential CO oxidation. International Journal of Hydrogen Energy, 39(11), 5696–5703. https://doi.org/10.1016/j.ijhydene.2014.01.128
Li, Z. (2004). Plasma treatment of Ni catalyst via a corona discharge. Journal of Molecular Catalysis A: Chemical, 211(1-2), 149–153. https://doi.org/10.1016/j.molcata.2003.10.003
Hua, W., Jin, L., He, X., Liu, J., & Hu, H. (2010). Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma. Catalysis Communications, 11(11), 968–972. https://doi.org/10.1016/j.catcom.2010.04.007
Chen, M. ., Chu, W., Dai, X. ., & Zhang, X. . (2004). New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene. Catalysis Today, 89(1-2), 201–204. https://doi.org/10.1016/j.cattod.2003.11.027
Aguilera, D. A., Perez, A., Molina, R., & Moreno, S. (2011). Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Applied Catalysis B: Environmental, 104(1-2), 144–150. https://doi.org/10.1016/j.apcatb.2011.02.019
Morales, M. R., Barbero, B. P., & Cadús, L. E. (2008). Evaluation and characterization of Mn–Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content. Fuel, 87(7), 1177–1186. https://doi.org/10.1016/j.fuel.2007.07.015
Park, P. W., & Ledford, J. S. (1998). The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane. Applied Catalysis B: Environmental, 15(3-4), 221–231. https://doi.org/10.1016/s0926-3373(98)80008-8
Dubal, D. P., Gund, G. S., Lokhande, C. D., & Holze, R. (2013). CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Materials Research Bulletin, 48(2), 923–928. https://doi.org/10.1016/j.materresbull.2012.11.081
Aghazadeh, M., Asadi, M., Maragheh, M. G., Ganjali, M. R., Norouzi, P., & Faridbod, F. (2016). Facile preparation of MnO 2 nanorods and evaluation of their supercapacitive characteristics. Applied Surface Science, 364, 726–731. https://doi.org/10.1016/j.apsusc.2015.12.227
Dey, S., Dhal, G.C., Mohan, D., Prasad, R. (2017). Effect of Preparation Conditions on the Catalytic Activity of CuMnOx Catalysts for CO Oxidation. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 431-451. https://doi.org/10.9767/bcrec.12.3.900.437-451.
Luo, S., Xu, S., Zhang, Y., Liu, J., Wang, S., & He, P. (2016). Preparation of MnO2 and MnO2/carbon nanotubes nanocomposites with improved electrochemical performance for lithium ion batteries. Journal of Solid State Electrochemistry, 20(7), 2045–2053. https://doi.org/10.1007/s10008-016-3208-5
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.