Effect of pH and active radical on the photodegradation of Ciprofloxacin antibiotic in wastewater using novel catalyst based on rGO/halloysite composite decorating with copper iron oxide
DOI:
https://doi.org/10.51316/jca.2023.015Keywords:
Antibiotic photodecomposition, copper iron oxide, reduced gaphene oxide/halloysite nanotube, active radicalAbstract
A new generation photocatalyst CuFe2O4/rGO/halloysite nanotube (HNT) was manufactured using a simple procedure in this work. Material characterisation results reveal that the CuFe2O4 active phase with a size of around 30-40 nm is spread rather consistently across the sandwich-like structure of rGO/HNT. The material's bandgap energy is around 1.9 eV, which boosts the material's capacity to function even in the visible light area. The catalytic activity test showed that the catalyst, with an active phase composition of 70% by weight, was able to completely decomposing CIP after just 1 hour of light. The pHpzc value and pH impact were also investigated. The findings suggest that the material can completely handle CIP in a neutral environment (pH = 7). Scavenger tests also demonstrated the involvement of reactive radicals in CIP degradation, with holes (h+) and hydroxyl radicals (●OH) having the major effect. These important results constitute the basis for the in-depth investigations of the CIP degradation mechanism.
Downloads
References
Adams C, Wang Y, Loftin K, Meyer M, J Environ Eng 128 (2002) 253–260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
Alam SN, Sharma N, Kumar L, Graphene 6 (2017) 1–18. https://doi.org/10.4236/graphene.2017.61001
Ali K, Bahadur A, Jabbar A, et al., J Magn Magn Mater 434 (2017) 30–36. https://doi.org/10.1016/j.jmmm.2016.12.009
Anjana Anand AS, Adish Kumar S, Rajesh Banu J, Ginni G Desalination Water Treat 57 (2016) 8236–8242. https://doi.org/10.1080/19443994.2015.1021843
Cheng R, Fan X, Wang M, et al., RSC Adv 6 (2016) 18990–18995. https://doi.org/10.1039/C5RA27221A
Coronado JM, Photons, Electrons and Holes: Fundamentals of Photocatalysis with Semiconductors. In: Coronado JM, Fresno F, Hernández-Alonso MD, Portela R (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Springer, London, 2013, p.5–33
Corra L, J Health Pollut 8 (2018) 180916. https://doi.org/10.5696/2156-9614-8.19.180916
Das S, Ghosh S, Misra AJ, et al., Int J Environ Res Public Health 15 (2018) 2440. https://doi.org/10.3390/ijerph15112440
Dey C, De D, Nandi M, Goswami MM, Mater Chem Phys 242 (2020) 122237. https://doi.org/10.1016/j.matchemphys.2019.122237
Dhanda R, Kidwai M, RSC Adv 6 (2016) 53430–53437. https://doi.org/10.1039/C6RA08868F
Dietrich DR, Webb SF, Petry T, Toxicol Lett 131 (2002) 1–3. https://doi.org/10.1016/s0378-4274(02)00062-0
Gao C, Li B, Chen N, et al., RSC Adv 6 (2016) 49228–49235. https://doi.org/10.1039/C6RA01279E
H. Kamel A, Hassan AA, Amr AE-GE, et al., Nanomaterials 10 (2020) 586. https://doi.org/10.3390/nano10030586
Igwegbe CA, Oba SN, Aniagor CO, et al., J Ind Eng Chem 93 (2021) 57–77. https://doi.org/10.1016/j.jiec.2020.09.023
Kumar A, Rout L, Achary LSK, et al., Sci Rep 7 (2017) 42975. https://doi.org/10.1038/srep42975
Kümmerer K, Chemosphere 75 (2009) 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086
Kuvarega AT, Selvaraj R, Mamba BB, Graphene-Based Photocatalytic Materials: An Overview. In: Balakumar S, Keller V, Shankar MV (eds) Nanostructured Materials for Environmental Applications. Springer International Publishing, Cham, 2021, p. 433–454
Ling Tan H, F. Abdi F, Hau Ng Y, Chem Soc Rev 48 (2019) 1255–1271. https://doi.org/10.1039/C8CS00882E
Liu P, Zhao M, Appl Surf Sci 255 (2009) 3989–3993. https://doi.org/10.1016/j.apsusc.2008.10.094
Liu Y, Jiang X, Li B, et al., J Mater Chem A 2 (2014) 4264–4269. https://doi.org/10.1039/C3TA14594H
Malakootian M, Kannan K, Gharaghani MA, et al., J Environ Chem Eng 7 (2019) 103457. https://doi.org/10.1016/j.jece.2019.103457
Malakootian M, Nasiri A, Mahdizadeh H, Water Sci Technol 78 (2018) 2158–2170. https://doi.org/10.2166/wst.2018.494
Muthu RN, Rajashabala S, Kannan R, RSC Adv 6 (2016) 79072–79084. https://doi.org/10.1039/C6RA13865A
Nanda KK, Swain S, Satpati B, et al., ACS Appl Mater Interfaces 7 (2015) 7970–7978. https://doi.org/10.1021/acsami.5b00022
Nasiri A, Tamaddon F, Mosslemin MH, et al., Environ Health Eng Manag 6 (2019) 41–51. https://doi.org/10.15171/EHEM.2019.05
Nhi LTT, Thuan LV, Uyen DM, et al., RSC Adv 10 (2020) 16330–16338. https://doi.org/10.1039/D0RA01854F
Noh JS, Schwarz JA, J Colloid Interface Sci 130 (1989) 157–164. https://doi.org/10.1016/0021-9797(89)90086-6
Rakshit S, Sarkar D, Elzinga EJ, et al., J Hazard Mater 246–247 (2013) 221–226. https://doi.org/10.1016/j.jhazmat.2012.12.032
Tamaddon F, Nasiri A, Yazdanpanah G, MethodsX 7 (2019) 74–81. https://doi.org/10.1016/j.mex.2019.12.005
Yu L, Zhang Y, Zhang B, Liu J, Sci Rep 4 92014) 4551. https://doi.org/10.1038/srep04551
Zaviska F, Drogui P, Grasmick A, et al, J Membr Sci 429 (2013) 121–129. https://doi.org/10.1016/j.memsci.2012.11.022
Zeng G, He Y, Ye Z, et al., Ind Eng Chem Res 56 (2017) 10472–10481. https://doi.org/10.1021/acs.iecr.7b02723
Zeng Y, Chen D, Chen T, et al., Chemosphere 227 (2019) 198–206. https://doi.org/10.1016/j.chemosphere.2019.04.039
Zhang X, Feng M, Qu R, et al., Chem Eng J 301 (2016) 1–11. https://doi.org/10.1016/j.cej.2016.04.096
Zhao D, Zhou J, Liu N, Mater Sci Eng A 431 (2006) 256–262. https://doi.org/10.1016/j.msea.2006.06.001
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-MDA-02