Kinetic study on cyclopentane hydrates in the presence of sodium chloride

Authors

  • Pham Trung Kien Department of Oil Refining and Petrochemicals, Hanoi University of Mining and Geology, Vietnam Author
  • Hoang Thi Quynh Trang SPIN Center, Ecole Nationale Supérieure des Mines de Saint-Etienne, France Author
  • Ho Van Son Department of Oil Refining and Petrochemicals, Hanoi University of Mining and Geology, Vietnam Author
  • Ngo Van Hieu Department of Oil Refining and Petrochemicals, Hanoi University of Mining and Geology, Vietnam Author
  • Le Quang Duyen Department of Drilling and Production, Hanoi University of Mining and Geology, Vietnam Author
  • Pham Viet Anh Department of Oil Refining and Petrochemicals, Hanoi University of Mining and Geology, Vietnam Author
  • Ana Cameirao SPIN Center, Ecole Nationale Supérieure des Mines de Saint-Etienne, France Author
  • Jérôme Douzet SPIN Center, Ecole Nationale Supérieure des Mines de Saint-Etienne, France Author
  • Baptiste Bouillot SPIN Center, Ecole Nationale Supérieure des Mines de Saint-Etienne, France Author
  • Jean-Michel Herri SPIN Center, Ecole Nationale Supérieure des Mines de Saint-Etienne, France Author

DOI:

https://doi.org/10.62239/jca.2024.063

Keywords:

desalination, hydrates, formation, kinetics

Abstract

Water is an important resource for human life. The lack of clean water in the world now becomes more serious. As a result, seawater desalination to produce fresh water is becoming indispensable. In recent years, hydrate-based desalination is a potential solution for the drinking water shortage issue. Recently, Cyclopentane (CP) is used as a hydrate former for desalination process via crystallization at low temperature and atmospheric pressure. The objective of this study is to provide the new kinetic data of CP hydrates in the presence of sodium chloride with a concentration of 3.5 wt.%. The experimental data for CP hydrates in the presence of sodium chloride are obtained in a batch reactor system with a setup temperature range of -2.5 to  -0.5 oC and at atmospheric pressure. The effects of temperature, agitation speed and amount of CP on kinetics of CP hydrate formation are also performed. 

Downloads

Download data is not yet available.

References

U. N. Water, “Coping with Water Scarcity: Challenge of the Twenty-First Century,” Prep. WorldWater Day; World Heal. Organ., vol. Geneva, Sw, 2007.

A. D. Khawaji, Desalination, 221 (2008) 47–69. https://doi.org/10.1016/j.desal.2007.01.067

A. Subramani, Water Res, 75 (2015) 164–187. https://doi.org/10.1016/j.watres.2015.02.032.

R. G. Raluy, Desalination, 183 (2005) 81–93 https://doi.org/10.1016/j.desal.2005.04.023.

WHO, “Desalination for Safe Water Supply,” Geneva World Heal. Organ., 2007.

P. Sahu, Desalin. Water Treat., 250 (2022) 28146. https://doi.org/10.5004/dwt.2022.28146

R. Du, Y. Fu, L. Zhang, J. Zhao, Y. Song, and Z. Ling, Desalination, 534 (2022) 115785. https://doi.org/10.1016/j.desal.2022.115785

P. Babu, Energy, 85 (2015) 261-279. https://doi.org/10.1016/j.energy.2015.03.103

T. He, S. K. Nair, P. Babu, P. Linga, and I. A. Karimi, Appl. Energy, 222 (2018) 13–24. https://doi.org/10.1016/j.apenergy.2018.04.006

Z. Rong, T. He, P. Babu, J. Zheng, and P. Linga, Desalination, 463 (2019) 69–80. https://doi.org/10.1016/j.desal.2019.04.015

H. Xu, M. N. Khan, C. J. Peters, E. D. Sloan, and C. A. Koh, J. Chem. Eng. Data, 63(4) (2018) 1081–1087. https://doi.org/10.1021/acs.jced.7b00815

Y. Lv, S. Wang, C. Sun, J. Gong, and G. Chen, Desalination, 413 (2017) 217–222. https://doi.org/10.1016/j.desal.2017.03.025

J. Cha and Y. Seol, ACS Sustain. Chem. Eng. 1(10) (2013) 1218–1224. https://doi.org/10.1021/sc400160u

S. Ho-Van, Chem. Eng. Technol., 7 (2019) 1481–1491. https://doi.org/10.1002/ceat.201800746.

J. M. a B et al., Water Res., 246 (2023) 120707. https://doi.org/10.1016/j.watres.2023.120707

S. Ho-Van, J. Environ. Chem. Eng., 7(5) (2019) 103359. https://doi.org/10.1016/j.jece.2019.103359

S. P. K. S. Han, J. Y. Shin, Y. W. Rhee, Desalination, 354 (2014) 17-22. https://doi.org/10.1016/j.desal.2014.09.023

S. Han, Y. Rhee, and S. Kang, DES, 404 (2017) 132–37. https//doi.org/10.1016/j.desal.2016.11.016.

M. Tanaka, K. Tsugane, D. Suga, S. Tomura, R. Ohmura, and K. Yasuda, ACS Sustain. Chem. Eng., 9(27) (2021) 9078–9084. https//doi.org/10.1021/acssuschemeng.1c02356.

S. J. A. B, M. M. A, and H. Ganji, J. Taiwan Inst. Chem. Eng., 143 (2023) 104653. https://doi.org/10.1016/j.jtice.2022.104653

E. D. S. and F. Fleyfel, AIChE J., 37(9) (1991) 1281-1292. https://doi.org/10.1002/aic.690370902.

S. Ho-Van, AIChE J., 64(6) (2018) 2207–2218, 2018. https://doi.org/10.1002/aic.16067

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Kinetic study on cyclopentane hydrates in the presence of sodium chloride. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 85-89. https://doi.org/10.62239/jca.2024.063

Share

Funding data

Similar Articles

1-10 of 70

You may also start an advanced similarity search for this article.