Kinetic study on cyclopentane hydrates in the presence of sodium chloride
DOI:
https://doi.org/10.62239/jca.2024.063Keywords:
desalination, hydrates, formation, kineticsAbstract
Water is an important resource for human life. The lack of clean water in the world now becomes more serious. As a result, seawater desalination to produce fresh water is becoming indispensable. In recent years, hydrate-based desalination is a potential solution for the drinking water shortage issue. Recently, Cyclopentane (CP) is used as a hydrate former for desalination process via crystallization at low temperature and atmospheric pressure. The objective of this study is to provide the new kinetic data of CP hydrates in the presence of sodium chloride with a concentration of 3.5 wt.%. The experimental data for CP hydrates in the presence of sodium chloride are obtained in a batch reactor system with a setup temperature range of -2.5 to -0.5 oC and at atmospheric pressure. The effects of temperature, agitation speed and amount of CP on kinetics of CP hydrate formation are also performed.
Downloads
References
U. N. Water, “Coping with Water Scarcity: Challenge of the Twenty-First Century,” Prep. WorldWater Day; World Heal. Organ., vol. Geneva, Sw, 2007.
A. D. Khawaji, Desalination, 221 (2008) 47–69. https://doi.org/10.1016/j.desal.2007.01.067
A. Subramani, Water Res, 75 (2015) 164–187. https://doi.org/10.1016/j.watres.2015.02.032.
R. G. Raluy, Desalination, 183 (2005) 81–93 https://doi.org/10.1016/j.desal.2005.04.023.
WHO, “Desalination for Safe Water Supply,” Geneva World Heal. Organ., 2007.
P. Sahu, Desalin. Water Treat., 250 (2022) 28146. https://doi.org/10.5004/dwt.2022.28146
R. Du, Y. Fu, L. Zhang, J. Zhao, Y. Song, and Z. Ling, Desalination, 534 (2022) 115785. https://doi.org/10.1016/j.desal.2022.115785
P. Babu, Energy, 85 (2015) 261-279. https://doi.org/10.1016/j.energy.2015.03.103
T. He, S. K. Nair, P. Babu, P. Linga, and I. A. Karimi, Appl. Energy, 222 (2018) 13–24. https://doi.org/10.1016/j.apenergy.2018.04.006
Z. Rong, T. He, P. Babu, J. Zheng, and P. Linga, Desalination, 463 (2019) 69–80. https://doi.org/10.1016/j.desal.2019.04.015
H. Xu, M. N. Khan, C. J. Peters, E. D. Sloan, and C. A. Koh, J. Chem. Eng. Data, 63(4) (2018) 1081–1087. https://doi.org/10.1021/acs.jced.7b00815
Y. Lv, S. Wang, C. Sun, J. Gong, and G. Chen, Desalination, 413 (2017) 217–222. https://doi.org/10.1016/j.desal.2017.03.025
J. Cha and Y. Seol, ACS Sustain. Chem. Eng. 1(10) (2013) 1218–1224. https://doi.org/10.1021/sc400160u
S. Ho-Van, Chem. Eng. Technol., 7 (2019) 1481–1491. https://doi.org/10.1002/ceat.201800746.
J. M. a B et al., Water Res., 246 (2023) 120707. https://doi.org/10.1016/j.watres.2023.120707
S. Ho-Van, J. Environ. Chem. Eng., 7(5) (2019) 103359. https://doi.org/10.1016/j.jece.2019.103359
S. P. K. S. Han, J. Y. Shin, Y. W. Rhee, Desalination, 354 (2014) 17-22. https://doi.org/10.1016/j.desal.2014.09.023
S. Han, Y. Rhee, and S. Kang, DES, 404 (2017) 132–37. https//doi.org/10.1016/j.desal.2016.11.016.
M. Tanaka, K. Tsugane, D. Suga, S. Tomura, R. Ohmura, and K. Yasuda, ACS Sustain. Chem. Eng., 9(27) (2021) 9078–9084. https//doi.org/10.1021/acssuschemeng.1c02356.
S. J. A. B, M. M. A, and H. Ganji, J. Taiwan Inst. Chem. Eng., 143 (2023) 104653. https://doi.org/10.1016/j.jtice.2022.104653
E. D. S. and F. Fleyfel, AIChE J., 37(9) (1991) 1281-1292. https://doi.org/10.1002/aic.690370902.
S. Ho-Van, AIChE J., 64(6) (2018) 2207–2218, 2018. https://doi.org/10.1002/aic.16067
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Kurita Water and Environment Foundation
Grant numbers 21Pvn034-50U