Adsorption of Pb2+ ions of natural red lava rock powder in aqueous media
DOI:
https://doi.org/10.62239/jca.2024.031Keywords:
Lava rock, Pb2+, adsorption, isotherm, kineticsAbstract
Red lava rock is available in nature and is formed from volcanic eruptions. Volcanic rocks are composed of oxides of diverse metals and have considerable porosity. In this study, lava rock powder was ground to a specific size and dried to test its ability to adsorb heavy metals in water. The morphology of the stone powder was observed to show crystals of 100–300 nm in size clumping into particles of a few μm. The phase structure is mainly in the form of Ca(Mg,Al)(Si,Al)2O6; in addition, the phases CaAl2Si4O12.2H2O, Ca2MgSi2O7, and Ca3MgSi2O8 also exist. The material's maximum Pb2+ ion adsorption capacity reaches 32.05 mg/g at endogenous pH. The isotherm of Pb2+ adsorption on the material follows the Langmuir model, and the adsorption kinetics are pseudo-first-order kinetics.
Downloads
References
M.S. Collin, S.K. Venkatraman, N. Vijayakumar, V. Kanimozhi, S.M. Arbaaz, R.G.S. Stacey, J. Anusha, R. Choudhary, V. Lvov, G.I. Tovar, F. Senatov, S. Koppala, S. Swamiappan, Journal of Hazardous Materials Advances 7 (2022) 100094. https://doi.org/10.1016/j.hazadv.2022.100094
M. Boskabady, N. Marefati, T. Farkhondeh, F. Shakeri, A. Farshbaf, M.H. Boskabady, Environ Int 120 (2018) 404-420. https://doi.org/10.1016/j.envint.2018.08.013
C. Giulioni, V. Maurizi, V. De Stefano, G. Polisini, J.Y. Teoh, G. Milanese, A.B. Galosi, D. Castellani, Reprod Toxicol 118 (2023) 108387. https://doi.org/10.1016/j.reprotox.2023.108387
C. Niu, M. Dong, Y. Niu, Phytomedicine 114 (2023) 154789. https://doi.org/10.1016/j.phymed.2023.154789
K. Raj, A.P. Das, Environmental Chemistry and Ecotoxicology 5 (2023) 79-85. https://doi.org/10.1016/j.enceco.2023.02.001
V.I. Naranjo, M. Hendricks, K.S. Jones, Pediatr Neurol 113 (2020) 51-55. https://doi.org/10.1016/j.pediatrneurol.2020.08.005
S.U. Rahman, J.C. Han, M. Ahmad, S. Gao, K.A. Khan, B. Li, Y. Zhou, X. Zhao, Y. Huang, Sci Total Environ 904 (2023) 166677. https://doi.org/10.1016/j.scitotenv.2023.166677
S. Hemmaphan, N.K. Bordeerat, Int J Environ Res Public Health 19 (2022). https://doi.org/10.3390/ijerph19074307
W. Bai, R. Tang, G. Wu, W. Wang, S. Yuan, L. Xiao, X. Zhan, Z.H. Hu, J Hazard Mater 455 (2023) 131633. https://doi.org/10.1016/j.jhazmat.2023.131633
H. Mekatel, S. Amokrane, A. Benturki, D. Nibou, Procedia Engineering 33 (2012) 52-57. https://doi.org/10.1016/j.proeng.2012.01.1176
J. Wu, T. Wang, J. Wang, Y. Zhang, W.P. Pan, Sci Total Environ 754 (2021) 142150. 10.1016/j.scitotenv.2020.142150
H. Gong, Y. Cao, W. Zeng, C. Sun, Y. Wang, J. Su, H. Ren, P. Wang, L. Zhou, G. Kai, J. Qian, Environmental Research (2024). https://doi.org/10.1016/j.envres.2024.118360
Z. Mei, L. Bo, C. Yanguang, Z. Jiaojing, Z. Yanan, S. Hua, H. Soleymanabadi, J. Wu, Journal of Industrial and Engineering Chemistry (2023). https://doi.org/10.1016/j.jiec.2023.11.052
L. Xu, T. Bai, X. Yi, K. Zhao, W. Shi, F. Dai, J. Wei, J. Wang, C. Shi, Int J Biol Macromol 238 (2023) 124131. https://doi.org/10.1016/j.ijbiomac.2023.124131
M.B. Yahia, R. Gerhardt, L. Sellaoui, H.Y.S. Al-Zahrani, A.P.O. Inácio, D. Dias, T.R.S.A. Cadaval, L.A. de Almeida Pinto, A. Bonilla-Petriciolet, M. Badawi, Separation and Purification Technology 337 (2024). https://doi.org/10.1016/j.seppur.2024.126451
A.L. Obsa, N.T. Shibeshi, E. Mulugeta, G.A. Workeneh, Results in Engineering 21 (2024). https://doi.org/10.1016/j.rineng.2024.101756
J. Du, A. Zhou, X. Lin, Y. Bu, Environ Res 209 (2022) 112817. 10.1016/j.envres.2022.112817
Y. Gu, H. Feng, B. Wang, J. Qiu, X. Meng, L. Zhang, B. Zhang, N. Chen, L. Tan, Microporous and Mesoporous Materials 363 (2024). https://doi.org/10.1016/j.micromeso.2023.112821
B. Song, Z. Wang, J. Li, M. Luo, P. Cao, C. Zhang, Chemical Engineering Journal 426 (2021). 10.1016/j.cej.2021.131940
G. Zhang, W. Chen, M. Dou, D. Su, J. Zhang, Z. Zhao, Renewable Energy 217 (2023). https://doi.org/10.1016/j.renene.2023.119214
X. Zhu, T. Song, Z. Lv, G. Ji, Process Safety and Environmental Protection 104 (2016) 373-381. https://doi.org/10.1016/j.psep.2016.09.019
H.-h. Ji, F.-x. Ling, P. Wang, B.-k. Sui, S.-j. Wang, S.-h. Yuan, Journal of Fuel Chemistry and Technology 49 (2021) 1049-1056. https://doi.org/10.1016/s1872-5813(21)60107-x
E. Alemayehu, B. Lennartz, J Hazard Mater 169 (2009) 395-401. https://doi.org/10.1016/j.jhazmat.2009.03.109
R.P. Wilkerson, M.P. Petkov, G.E. Voecks, C.S. Lynch, H.S. Shulman, S. Sundaramoorthy, A. Choudhury, D.L. Rickman, M.R. Effinger, Icarus 400 (2023). https://doi.org/10.1016/j.icarus.2023.115577
M. Liu, A. Iizuka, E. Shibata, Materials Transactions 60 (2019) 61-67. https://doi.org/10.2320/matertrans.M-M2018848
S. Ori, S. Quartieri, G. Vezzalini, V. Dmitriev, American Mineralogist 93 (2008) 53-62. 10.2138/am.2008.2554
R. Choudhary, S. Koppala, S. Swamiappan, Journal of Asian Ceramic Societies 3 (2018) 173-177. https://doi.org/10.1016/j.jascer.2015.01.002
X. Di, T. Xiaoli, C. Changlun, W. Xiangke, Journal of Hazardous Materials 154 (2008) 407-423. http://dx.doi.org/10.1016/j.jhazmat.2007.10.059